Feng-Ting Liao
2025
Let’s Fuse Step by Step: A Generative Fusion Decoding Algorithm with LLMs for Robust and Instruction-Aware ASR and OCR
Chan-Jan Hsu
|
Yi-Chang Chen
|
Feng-Ting Liao
|
Pei-Chen Ho
|
Yu-Hsiang Wang
|
Po-Chun Hsu
|
Da-shan Shiu
Findings of the Association for Computational Linguistics: ACL 2025
We introduce “Generative Fusion Decoding” (GFD), a novel shallow fusion framework, utilized to integrate large language models(LLMs) into cross-modal text recognition systems inlculding automatic speech recognition (ASR) and optical character recognition (OCR). We derive the formulas necessary to enable GFD to operate across mismatched token spaces of different models by calculating likelihood at the byte level, thereby enabling seamless fusion and synchronous progression during the decoding process. GFD is plug-and-play bydesign, making it readily compatible with various auto-regressive models without the need for any re-training. GFD proves effective for general ASR and OCR tasks through intermediate and frequent interactions with LLMs, surpassing cascaded methods in English and Mandarin benchmarks. In addition, GFD transfers in-context learning abilities of LLMs and allows for adaptive ASR in instruction-aware andlong-context settings, yielding significant WER reductions of up to 17.7%.
2021
Cross-Lingual Transfer with MAML on Trees
Jezabel Garcia
|
Federica Freddi
|
Jamie McGowan
|
Tim Nieradzik
|
Feng-Ting Liao
|
Ye Tian
|
Da-shan Shiu
|
Alberto Bernacchia
Proceedings of the Second Workshop on Domain Adaptation for NLP
In meta-learning, the knowledge learned from previous tasks is transferred to new ones, but this transfer only works if tasks are related. Sharing information between unrelated tasks might hurt performance, and it is unclear how to transfer knowledge across tasks that have a hierarchical structure. Our research extends a meta-learning model, MAML, by exploiting hierarchical task relationships. Our algorithm, TreeMAML, adapts the model to each task with a few gradient steps, but the adaptation follows the hierarchical tree structure: in each step, gradients are pooled across tasks clusters and subsequent steps follow down the tree. We also implement a clustering algorithm that generates the tasks tree without previous knowledge of the task structure, allowing us to make use of implicit relationships between the tasks. We show that TreeMAML successfully trains natural language processing models for cross-lingual Natural Language Inference by taking advantage of the language phylogenetic tree. This result is useful since most languages in the world are under-resourced and the improvement on cross-lingual transfer allows the internationalization of NLP models.
Search
Fix author
Co-authors
- Da-shan Shiu 2
- Alberto Bernacchia 1
- Yi-Chang Chen 1
- Federica Freddi 1
- Jezabel Garcia 1
- show all...