Fangyuan Li


2025

pdf bib
EdgeInfinite: A Memory-Efficient Infinite-Context Transformer for Edge Devices
Jiyu Chen | Shuang Peng | Daxiong Luo | Fan Yang | Renshou Wu | Fangyuan Li | Xiaoxin Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Transformer-based large language models (LLMs) encounter challenges in processing long sequences on edge devices due to the quadratic complexity of attention mechanisms and growing memory demands from Key-Value (KV) cache. Existing KV cache optimizations struggle with irreversible token eviction in long-output tasks, while alternative sequence modeling architectures prove costly to adopt within established Transformer infrastructure. We present EdgeInfinite, a memory-efficient solution for infinite contexts that integrates compressed memory into Transformer-based LLMs through a trainable memory-gating module. This approach maintains full compatibility with standard Transformer architectures, requiring fine-tuning only a small part of parameters, and enables selective activation of the memory-gating module for long and short context task routing. The experimental result shows that EdgeInfinite achieves comparable performance to baseline Transformer-based LLM on long context benchmarks while optimizing memory consumption and time to first token.

2016

pdf bib
Learning Event Expressions via Bilingual Structure Projection
Fangyuan Li | Ruihong Huang | Deyi Xiong | Min Zhang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Identifying events of a specific type is a challenging task as events in texts are described in numerous and diverse ways. Aiming to resolve high complexities of event descriptions, previous work (Huang and Riloff, 2013) proposes multi-faceted event recognition and a bootstrapping method to automatically acquire both event facet phrases and event expressions from unannotated texts. However, to ensure high quality of learned phrases, this method is constrained to only learn phrases that match certain syntactic structures. In this paper, we propose a bilingual structure projection algorithm that explores linguistic divergences between two languages (Chinese and English) and mines new phrases with new syntactic structures, which have been ignored in the previous work. Experiments show that our approach can successfully find novel event phrases and structures, e.g., phrases headed by nouns. Furthermore, the newly mined phrases are capable of recognizing additional event descriptions and increasing the recall of event recognition.