Fanfan Wang


2025

pdf bib
VCD: A Dataset for Visual Commonsense Discovery in Images
Xiangqing Shen | Fanfan Wang | Siwei Wu | Rui Xia
Findings of the Association for Computational Linguistics: ACL 2025

Visual commonsense plays a vital role in understanding and reasoning about the visual world. While commonsense knowledge bases like ConceptNet provide structured collections of general facts, they lack visually grounded representations. Scene graph datasets like Visual Genome, though rich in object-level descriptions, primarily focus on directly observable information and lack systematic categorization of commonsense knowledge. We present Visual Commonsense Dataset (VCD), a large-scale dataset containing over 100,000 images and 14 million object-commonsense pairs that bridges this gap. VCD introduces a novel three-level taxonomy for visual commonsense, integrating both Seen (directly observable) and Unseen (inferrable) commonsense across Property, Action, and Space aspects. Each commonsense is represented as a triple where the head entity is grounded to object bounding boxes in images, enabling scene-dependent and object-specific visual commonsense representation. To demonstrate VCD’s utility, we develop VCM, a generative model that combines a vision-language model with instruction tuning to discover diverse visual commonsense from images. Extensive evaluations demonstrate both the high quality of VCD and its value as a resource for advancing visually grounded commonsense understanding and reasoning. Our dataset and code will be released on https://github.com/NUSTM/VCD.

2024

pdf bib
SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations
Fanfan Wang | Heqing Ma | Rui Xia | Jianfei Yu | Erik Cambria
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

The ability to understand emotions is an essential component of human-like artificial intelligence, as emotions greatly influence human cognition, decision making, and social interactions. In addition to emotion recognition in conversations, the task of identifying the potential causes behind an individual’s emotional state in conversations, is of great importance in many application scenarios. We organize SemEval-2024 Task 3, named Multimodal Emotion Cause Analysis in Conversations, which aims at extracting all pairs of emotions and their corresponding causes from conversations. Under different modality settings, it consists of two subtasks: Textual Emotion-Cause Pair Extraction in Conversations (TECPE) and Multimodal Emotion-Cause Pair Extraction in Conversations (MECPE). The shared task has attracted 143 registrations and 216 successful submissions.In this paper, we introduce the task, dataset and evaluation settings, summarize the systems of the top teams, and discuss the findings of the participants.

2023

pdf bib
Generative Emotion Cause Triplet Extraction in Conversations with Commonsense Knowledge
Fanfan Wang | Jianfei Yu | Rui Xia
Findings of the Association for Computational Linguistics: EMNLP 2023

Emotion Cause Triplet Extraction in Conversations (ECTEC) aims to simultaneously extract emotion utterances, emotion categories, and cause utterances from conversations. However, existing studies mainly decompose the ECTEC task into multiple subtasks and solve them in a pipeline manner. Moreover, since conversations tend to contain many informal and implicit expressions, it often requires external knowledge and reasoning-based inference to accurately identify emotional and causal clues implicitly mentioned in the context, which are ignored by previous work. To address these limitations, in this paper, we propose a commonSense knowledge-enHanced generAtive fRameworK named SHARK, which formulates the ECTEC task as an index generation problem and generates the emotion-cause-category triplets in an end-to-end manner with a sequence-to-sequence model. Furthermore, we propose to incorporate both retrieved and generated commonsense knowledge into the generative model via a dual-view gate mechanism and a graph attention layer. Experimental results show that our SHARK model consistently outperforms several competitive systems on two benchmark datasets. Our source codes are publicly released at https://github.com/NUSTM/SHARK.