Fahad Shahbaz Khan


2025

pdf bib
AgriCLIP: Adapting CLIP for Agriculture and Livestock via Domain-Specialized Cross-Model Alignment
Umair Nawaz | Awais Muhammad | Hanan Gani | Muzammal Naseer | Fahad Shahbaz Khan | Salman Khan | Rao Anwer
Proceedings of the 31st International Conference on Computational Linguistics

Capitalizing on a vast amount of image-text data, large-scale vision-language pre-training has demonstrated remarkable zero-shot capabilities and has been utilized in several applications. However, models trained on general everyday web-crawled data often exhibit sub-optimal performance for specialized domains, likely due to domain shift. Recent works have tackled this problem for some domains (e.g., healthcare) by constructing domain-specialized image-text data. However, constructing a dedicated large-scale image-text dataset for sustainable areas of agriculture and livestock is still open to research. Further, this domain desires fine-grained feature learning due to the subtle nature of the downstream tasks (e.g., nutrient deficiency detection and livestock breed classification). To address this, we present AgriCLIP, a vision-language foundational model dedicated to the domain of agriculture and livestock. First, we propose a large-scale dataset named ALive that leverages a customized prompt generation strategy to overcome the scarcity of expert annotations. Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs. Second, we propose a training pipeline that integrates both contrastive and self-supervised learning to learn both global semantic and local fine-grained domain-specialized features. Experiments on a diverse set of 20 downstream tasks demonstrate the effectiveness of the AgriCLIP framework, achieving an absolute gain of 9.07% in terms of average zero-shot classification accuracy over the standard CLIP adaptation via domain-specialized ALive dataset. Our ALive dataset and code can be accessible on Github.

pdf bib
CAMEL-Bench: A Comprehensive Arabic LMM Benchmark
Sara Ghaboura | Ahmed Heakl | Omkar Thawakar | Ali Husain Salem Abdulla Alharthi | Ines Riahi | Abduljalil Radman | Jorma Laaksonen | Fahad Shahbaz Khan | Salman Khan | Rao Muhammad Anwer
Findings of the Association for Computational Linguistics: NAACL 2025

Recent years have witnessed a significant interest in developing large multi-modal models (LMMs) capable of performing various visual reasoning and understanding tasks. This has led to the introduction of multiple LMM benchmarks to evaluate LMMs on different tasks. However, most existing LMM evaluation benchmarks are predominantly English-centric. In this work, we develop a comprehensive LMM evaluation benchmark for the Arabic language to represent a large population of over 400 million speakers. The proposed benchmark, named CAMEL-Bench, comprises eight diverse domains and 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding to evaluate broad scenario generalizability. Our CAMEL-Bench comprises around 29,036 questions that are filtered from a larger pool of samples, where the quality is manually verified by native speakers to ensure reliable model assessment. We conduct evaluations of both closed-source, including GPT-4 series, and open-source LMMs. Our analysis reveals the need for substantial improvement, especially among the bestopen-source models, with even the closed-source GPT-4o achieving an overall score of 62%. Our benchmark will be publicly released.

pdf bib
VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs
Hanan Gani | Rohit Bharadwaj | Muzammal Naseer | Fahad Shahbaz Khan | Salman Khan
Findings of the Association for Computational Linguistics: NAACL 2025

The recent advancements in Large Language Models (LLMs) have greatly influenced the development of Large Multi-modal Video Models (Video-LMMs), significantly enhancing our ability to interpret and analyze video data. Despite their impressive capabilities, current Video-LMMs have not been evaluated for anomaly detection tasks, which is critical to their deployment in practical scenarios e.g., towards identifying deepfakes, manipulated video content, traffic accidents and crimes. In this paper, we introduce VANE-Bench, a benchmark designed to assess the proficiency of Video-LMMs in detecting and localizing anomalies and inconsistencies in videos. Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models, encompassing a variety of subtle anomalies and inconsistencies grouped into five categories: unnatural transformations, unnatural appearance, pass-through, disappearance and sudden appearance. Additionally, our benchmark features real-world samples from existing anomaly detection datasets, focusing on crime-related irregularities, atypical pedestrian behavior, and unusual events. The task is structured as a visual question-answering challenge to gauge the models’ ability to accurately detect and localize the anomalies within the videos. We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies. In conclusion, our research offers significant insights into the current capabilities of Video-LMMs in the realm of anomaly detection, highlighting the importance of our work in evaluating and improving these models for real-world applications. Our code and data is publicly available at https://github.com/rohit901/VANE-Bench.

pdf bib
LLMVoX: Autoregressive Streaming Text-to-Speech Model for Any LLM
Sambal Shikhar | Mohammed Irfan Kurpath | Sahal Shaji Mullappilly | Jean Lahoud | Fahad Shahbaz Khan | Rao Muhammad Anwer | Salman Khan | Hisham Cholakkal
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements in speech-to-speech dialogue systems leverage LLMs for multimodal interactions, yet they remain hindered by fine-tuning requirements, high computational overhead, and text-speech misalignment. Existing speech-enabled LLMs often degrade conversational quality by modifying the LLM, thereby compromising its linguistic capabilities. In contrast, we propose LLMVoX, a lightweight 30M-parameter, LLM-agnostic, autoregressive streaming TTS system that generates high-quality speech with low latency, while fully preserving the capabilities of the base LLM. Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency. By decoupling speech synthesis from LLM processing via a multi-queue token streaming system, LLMVoX enables seamless, infinite-length dialogues. Its plug-and-play design also facilitates extension to various tasks with different backbones. Furthermore, LLMVoX generalizes to new languages with minimal dataset adaptation, attaining a low Character Error Rate on an Arabic speech task. Evaluations demonstrate that LLMVoX matches or surpasses existing speech-enabled LLMs in both speech quality and latency, while maintaining the original linguistic strengths of the LLM. Additionally, we have integrated LLMVoX with a Vision-Language Model to create an omni-model with speech, text, and vision capabilities, without requiring additional multimodal training.

pdf bib
KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding
Ahmed Heakl | Muhammad Abdullah Sohail | Mukul Ranjan | Rania Elbadry | Ghazi Shazan Ahmad | Mohamed El-Geish | Omar Maher | Zhiqiang Shen | Fahad Shahbaz Khan | Salman Khan
Findings of the Association for Computational Linguistics: ACL 2025

With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 subdomains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (such as EasyOCR, PaddleOCR, and Surya) by an average of 60% in the character error rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges of accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.

pdf bib
Time Travel: A Comprehensive Benchmark to Evaluate LMMs on Historical and Cultural Artifacts
Sara Ghaboura | Ketan Pravin More | Ritesh Thawkar | Wafa Al Ghallabi | Omkar Thawakar | Fahad Shahbaz Khan | Hisham Cholakkal | Salman Khan | Rao Muhammad Anwer
Findings of the Association for Computational Linguistics: ACL 2025

Understanding historical and cultural artifacts demands human expertise and advanced computational techniques, yet the process remains complex and time-intensive. While large multimodal models offer promising support, their evaluation and improvement require a standardized benchmark. To address this, we introduce TimeTravel, a benchmark of 10,250 expert-verified samples spanning 266 distinct cultures across 10 major historical regions. Designed for AI-driven analysis of manuscripts, artworks, inscriptions, and archaeological discoveries, TimeTravel provides a structured dataset and robust evaluation framework to assess AI models’ capabilities in classification, interpretation, and historical comprehension. By integrating AI with historical research, TimeTravel fosters AI-powered tools for historians, archaeologists, researchers, and cultural tourists to extract valuable insights while ensuring technology contributes meaningfully to historical discovery and cultural heritage preservation. We evaluate contemporary AI models on TimeTravel, highlighting their strengths and identifying areas for improvement. Our goal is to establish AI as a reliable partner in preserving cultural heritage, ensuring that technological advancements contribute meaningfully to historical discovery. We release the TimeTravel dataset and evaluation suite as open-source resources for culturally and historically informed research.

pdf bib
LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
Omkar Thawakar | Dinura Dissanayake | Ketan Pravin More | Ritesh Thawkar | Ahmed Heakl | Noor Ahsan | Yuhao Li | Ilmuz Zaman Mohammed Zumri | Jean Lahoud | Rao Muhammad Anwer | Hisham Cholakkal | Ivan Laptev | Mubarak Shah | Fahad Shahbaz Khan | Salman Khan
Findings of the Association for Computational Linguistics: ACL 2025

Step-by-step reasoning is crucial for solving complex visual tasks, yet existing approaches lack a comprehensive framework for evaluating this capability and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing multi-step visual reasoning in large multimodal models (LMMs) through three key contributions. First, we introduce a Visual Reasoning Chain Benchmark, the most comprehensive benchmark for multi-step visual reasoning, covering eight diverse categories and over 4k reasoning steps. This enables rigorous evaluation of LMMs’ ability to reason accurately and interpretably across multiple steps. Second, we propose a fine-grained reasoning metric that evaluates correctness and logical coherence at each step, providing deeper insights beyond traditional accuracy metrics. Third, we introduce LlamaV-o1, a state-of-the-art multimodal reasoning model trained using a multi-step curriculum learning approach. LlamaV-o1 is optimized for structured, step-by-step reasoning and significantly outperforms existing open-source models. It surpasses Llava-CoT with a 3.8% absolute gain across six benchmarks, achieving an average score of 67.3 while being 5x faster during inference scaling. Our benchmark, model, and code is available at https://github.com/mbzuai-oryx/LlamaV-o1.

2024

pdf bib
BiMediX: Bilingual Medical Mixture of Experts LLM
Sara Pieri | Sahal Shaji Mullappilly | Fahad Shahbaz Khan | Rao Muhammad Anwer | Salman Khan | Timothy Baldwin | Hisham Cholakkal
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set that covers 1.3 Million diverse medical interactions, including 200k synthesized multi-turn doctor-patient chats, in a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic and 15% on our bilingual evaluations across multiple datasets. Additionally, BiMediX exceeds the accuracy of GPT4 by 4.4% in open-ended question UPHILL evaluation and largely outperforms state-of-the-art open source medical LLMs in human evaluations of multi-turn conversations. Our trained models, instruction set, and source code are available at https://github.com/mbzuai-oryx/BiMediX.