This is an internal, temporary preview of a proposed change to the ACL Anthology.
It may be incomplete or contain mistakes.
Please do not link to this content or treat it as official.
It will be removed when the change is merged or abandoned.
This paper introduced FFSTC 2, an expanded version of the existing Fongbe-to-French speech translation corpus, addressing the critical need for resources in African dialects for speech recognition and translation tasks. We extended the dataset by adding 36 hours of transcribed audio, bringing the total to 61 hours, thereby enhancing its utility for both automatic speech recognition (ASR) and speech translation (ST) in Fongbe, a low-resource language. Using this enriched corpus, we developed both cascade and end-to-end speech translation systems. Our models employ AfriHuBERT and HuBERT147, two speech encoders specialized to African languages, and the NLLB and mBART models as decoders. We also investigate the use of the SAMU-XLSR approach to inject sentence-level semantic information to the XSLR-128 model used as an alternative speech encoder. We also introduced a novel diacritic-substitution technique for ASR, which, when combined with NLLB, enables a cascade model to achieve a BLEU score of 37.23 ompared to 39.60 obtained by the best system using original diacritics. Among the end-to-end architectures evaluated, the architectures with data augmentation and NLLB as decoder achieved the highest score respectively, SAMU-NLLB scored the BLEU score of 28.43.
In this paper, we introduce the Fongbe to French Speech Translation Corpus (FFSTC). This corpus encompasses approximately 31 hours of collected Fongbe language content, featuring both French transcriptions and corresponding Fongbe voice recordings. FFSTC represents a comprehensive dataset compiled through various collection methods and the efforts of dedicated individuals. Furthermore, we conduct baseline experiments using Fairseq’s transformer_s and conformer models to evaluate data quality and validity. Our results indicate a score BLEU of 8.96 for the transformer_s model and 8.14 for the conformer model, establishing a baseline for the FFSTC corpus.
We describe in this paper our proposed systems for the Social Media Mining for Health 2022 shared task 1. In particular, we participated in the three sub-tasks, tasks that aim at extracting and processing Adverse Drug Events. We investigate different transformer-based pretrained models we fine-tuned on each task and proposed some improvement on the task of entity normalization.
Data-driven approaches for creating virtual patient dialogue systems require the availability of large data specific to the language,domain and clinical cases studied. Based on the lack of dialogue corpora in French for medical education, we propose an annotatedcorpus of dialogues including medical consultation interactions between doctor and patient. In this work, we detail the building processof the proposed dialogue corpus, describe the annotation guidelines and also present the statistics of its contents. We then conducted aquestion categorization task to evaluate the benefits of the proposed corpus that is made publicly available.
Dans le contexte médical, un patient ou médecin virtuel dialoguant permet de former les apprenants au diagnostic médical via la simulation de manière autonome. Dans ce travail, nous avons exploité les propriétés sémantiques capturées par les représentations distribuées de mots pour la recherche de questions similaires dans le système de dialogues d’un agent conversationnel médical. Deux systèmes de dialogues ont été créés et évalués sur des jeux de données collectées lors des tests avec les apprenants. Le premier système fondé sur la correspondance de règles de dialogue créées à la main présente une performance globale de 92% comme taux de réponses cohérentes sur le cas clinique étudié tandis que le second système qui combine les règles de dialogue et la similarité sémantique réalise une performance de 97% de réponses cohérentes en réduisant de 7% les erreurs de compréhension par rapport au système de correspondance de règles.