Federico Liberatore


2025

pdf bib
SANDWiCH: Semantical Analysis of Neighbours for Disambiguating Words in Context ad Hoc
Daniel Guzman Olivares | Lara Quijano | Federico Liberatore
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The rise of generative chat-based Large Language Models (LLMs) over the past two years has spurred a race to develop systems that promise near-human conversational and reasoning experiences. However, recent studies indicate that the language understanding offered by these models remains limited and far from human-like performance, particularly in grasping the contextual meanings of words—an essential aspect of reasoning. In this paper, we present a simple yet computationally efficient framework for multilingual Word Sense Disambiguation (WSD). Our approach reframes the WSD task as a cluster discrimination analysis over a semantic network refined from BabelNet using group algebra. We validate our methodology across multiple WSD benchmarks, achieving a new state of the art for all languages and tasks, as well as in individual assessments by part of speech. Notably, our model significantly surpasses the performance of current alternatives, even in low-resource languages, while reducing the parameter count by 72%.

2023

pdf bib
Enhancing Information Retrieval in Fact Extraction and Verification
Daniel Guzman Olivares | Lara Quijano | Federico Liberatore
Proceedings of the Sixth Fact Extraction and VERification Workshop (FEVER)

Modern fact verification systems have distanced themselves from the black box paradigm by providing the evidence used to infer their veracity judgments. Hence, evidence-backed fact verification systems’ performance heavily depends on the capabilities of their retrieval component to identify these facts. A popular evaluation benchmark for these systems is the FEVER task, which consists of determining the veracity of short claims using sentences extracted from Wikipedia. In this paper, we present a novel approach to the the retrieval steps of the FEVER task leveraging the graph structure of Wikipedia. The retrieval models surpass state of the art results at both sentence and document level. Additionally, we show that by feeding our retrieved evidence to the best-performing textual entailment model, we set a new state of the art in the FEVER competition.

2021

pdf bib
Back to the Basics: A Quantitative Analysis of Statistical and Graph-Based Term Weighting Schemes for Keyword Extraction
Asahi Ushio | Federico Liberatore | Jose Camacho-Collados
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Term weighting schemes are widely used in Natural Language Processing and Information Retrieval. In particular, term weighting is the basis for keyword extraction. However, there are relatively few evaluation studies that shed light about the strengths and shortcomings of each weighting scheme. In fact, in most cases researchers and practitioners resort to the well-known tf-idf as default, despite the existence of other suitable alternatives, including graph-based models. In this paper, we perform an exhaustive and large-scale empirical comparison of both statistical and graph-based term weighting methods in the context of keyword extraction. Our analysis reveals some interesting findings such as the advantages of the less-known lexical specificity with respect to tf-idf, or the qualitative differences between statistical and graph-based methods. Finally, based on our findings we discuss and devise some suggestions for practitioners. Source code to reproduce our experimental results, including a keyword extraction library, are available in the following repository: https://github.com/asahi417/kex