In a highly globalized world, it is important for multi-modal large language models (MLLMs) to recognize and respond correctly to mixed-cultural inputs.For example, a model should correctly identify kimchi (Korean food) in an image both when an Asian woman is eating it, as well as an African man is eating it.However, current MLLMs show an over-reliance on the visual features of the person, leading to misclassification of the entities. To examine the robustness of MLLMs to different ethnicity, we introduce MIXCUBE, a cross-cultural bias benchmark, and study elements from five countries and four ethnicities. Our findings reveal that MLLMs achieve both higher accuracy and lower sensitivity to such perturbation for high-resource cultures, but not for low-resource cultures. GPT-4o, the best-performing model overall, shows up to 58% difference in accuracy between the original and perturbed cultural settings in low-resource cultures
This paper explores the assumption that Large Language Models (LLMs) skilled in generation tasks are equally adept as evaluators. We assess the performance of three LLMs and one open-source LM in Question-Answering (QA) and evaluation tasks using the TriviaQA (Joshi et al., 2017) dataset. Results indicate a significant disparity, with LLMs exhibiting lower performance in evaluation tasks compared to generation tasks. Intriguingly, we discover instances of unfaithful evaluation where models accurately evaluate answers in areas where they lack competence, underscoring the need to examine the faithfulness and trustworthiness of LLMs as evaluators. This study contributes to the understanding of “the Generative AI Paradox” (West et al., 2023), highlighting a need to explore the correlation between generative excellence and evaluation proficiency, and the necessity to scrutinize the faithfulness aspect in model evaluations.
Despite the rapid development of large language models (LLMs) for the Korean language, there remains an obvious lack of benchmark datasets that test the requisite Korean cultural and linguistic knowledge. Because many existing Korean benchmark datasets are derived from the English counterparts through translation, they often overlook the different cultural contexts. For the few benchmark datasets that are sourced from Korean data capturing cultural knowledge, only narrow tasks such as hate speech detection are offered. To address this gap, we introduce a benchmark of Cultural and Linguistic Intelligence in Korean (CLIcK), a dataset comprising 1,995 QA pairs. CLIcK sources its data from official Korean exams and textbooks, partitioning the questions into eleven categories under the two main categories of language and culture. For each instance in click, we provide fine-grained annotation of which cultural and linguistic knowledge is required to correctly answer the question. Using CLIcK, we test 13 language models to assess their performance. Our evaluation uncovers insights into their performances across the categories, as well as the diverse factors affecting their comprehension. CLIcK offers the first large-scale comprehensive Korean-centric analysis of LLMs’ proficiency in Korean language and culture.