Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists’ workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT’s hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
Radiologists play a crucial role in translating medical images into actionable reports. However, the field faces staffing shortages and increasing workloads. While automated approaches using vision-language models (VLMs) show promise as assistants, they require exceptionally high accuracy. Most current VLMs in radiology rely solely on supervised fine-tuning. Meanwhile, additional preference fine-tuning in the post-training pipeline has become standard practice in the general domain. The challenge in radiology lies in the prohibitive cost of obtaining radiologist feedback at scale. To address this challenge, we propose an automated pipeline for preference feedback, focusing on chest X-ray radiology report generation (RRG). Specifically, our method leverages publicly available datasets containing pairs of images and radiologist-written reference reports with reference-based metrics, or Judges, eliminating the need for *additional radiologist feedback*. We investigate reward overoptimization via length exploitation in this setting and introduce a length-controlled version of the GREEN score. Our best-performing setup achieves state-of-the-art CheXbert scores on the MIMIC-CXR dataset for the RRG task while on average maintaining robust performance across six additional image perception and reasoning tasks.