Dora Zhao


2025

pdf bib
SPHERE: An Evaluation Card for Human-AI Systems
Dora Zhao | Qianou Ma | Xinran Zhao | Chenglei Si | Chenyang Yang | Ryan Louie | Ehud Reiter | Diyi Yang | Tongshuang Wu
Findings of the Association for Computational Linguistics: ACL 2025

In the era of Large Language Models (LLMs), establishing effective evaluation methods and standards for diverse human-AI interaction systems is increasingly challenging. To encourage more transparent documentation and facilitate discussion on human-AI system evaluation design options, we present an evaluation card SPHERE, which encompasses five key dimensions: 1) What is being evaluated?; 2) How is the evaluation conducted?; 3) Who is participating in the evaluation?; 4) When is evaluation conducted?; 5) How is evaluation validated? We conduct a review of 39 human-AI systems using SPHERE, outlining current evaluation practices and areas for improvement. We provide three recommendations for improving the validity and rigor of evaluation practices.

2024

pdf bib
Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes
Yusuke Hirota | Jerone Andrews | Dora Zhao | Orestis Papakyriakopoulos | Apostolos Modas | Yuta Nakashima | Alice Xiang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures protected group independence from all attributes and mitigates inpainting biases through data filtering. Evaluations on multi-label image classification and image captioning tasks show our method effectively reduces bias without compromising performance across various models. Specifically, we achieve an average societal bias reduction of 46.1% in leakage-based bias metrics for multi-label classification and 74.8% for image captioning.