Danil Astafurov


2025

pdf bib
Combining Automated and Manual Data for Effective Downstream Fine-Tuning of Transformers for Low-Resource Language Applications
Ulyana Isaeva | Danil Astafurov | Nikita Martynov
Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)

This paper addresses the constraints of down-stream applications of pre-trained language models (PLMs) for low-resource languages. These constraints are pre-train data deficiency preventing a low-resource language from being well represented in a PLM and inaccessibility of high-quality task-specific data annotation that limits task learning. We propose to use automatically labeled texts combined with manually annotated data in a two-stage task fine-tuning approach. The experiments revealed that utilizing such methodology combined with vocabulary adaptation may compensate for the absence of a targeted PLM or the deficiency of manually annotated data. The methodology is validated on the morphological tagging task for the Udmurt language. We publish our best model that achieved 93.25% token accuracy on HuggingFace Hub along with the training code1.

2024

pdf bib
A Family of Pretrained Transformer Language Models for Russian
Dmitry Zmitrovich | Aleksandr Abramov | Andrey Kalmykov | Vitaly Kadulin | Maria Tikhonova | Ekaterina Taktasheva | Danil Astafurov | Mark Baushenko | Artem Snegirev | Tatiana Shavrina | Sergei S. Markov | Vladislav Mikhailov | Alena Fenogenova
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer language models (LMs) are fundamental to NLP research methodologies and applications in various languages. However, developing such models specifically for the Russian language has received little attention. This paper introduces a collection of 13 Russian Transformer LMs, which spans encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) architectures. We provide a report on the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we aim to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.