Dan Oneață

Also published as: Dan Oneaţă, Dan Oneata


2025

pdf bib
Seeing What Tastes Good: Revisiting Multimodal Distributional Semantics in the Billion Parameter Era
Dan Oneata | Desmond Elliott | Stella Frank
Findings of the Association for Computational Linguistics: ACL 2025

Human learning and conceptual representation is grounded in sensorimotor experience, in contrast to state-of-the-art foundation models. In this paper, we investigate how well such large-scale models, trained on vast quantities of data, represent the semantic feature norms of concrete object concepts, e.g. a ROSE is red, smells sweet, and is a flower. More specifically, we use probing tasks to test which properties of objects these models are aware of. We evaluate image encoders trained on image data alone, as well as multimodally-trained image encoders and language-only models, on predicting an extended denser version of the classic McRae norms and the newer Binder dataset of attribute ratings. We find that multimodal image encoders slightly outperform language-only approaches, and that image-only encoders perform comparably to the language models, even on non-visual attributes that are classified as “encyclopedic” or “function”. These results offer new insights into what can be learned from pure unimodal learning, and the complementarity of the modalities.

2024

pdf bib
Visually Grounded Speech Models Have a Mutual Exclusivity Bias
Leanne Nortje | Dan Oneaţă | Yevgen Matusevych | Herman Kamper
Transactions of the Association for Computational Linguistics, Volume 12

When children learn new words, they employ constraints such as the mutual exclusivity (ME) bias: A novel word is mapped to a novel object rather than a familiar one. This bias has been studied computationally, but only in models that use discrete word representations as input, ignoring the high variability of spoken words. We investigate the ME bias in the context of visually grounded speech models that learn from natural images and continuous speech audio. Concretely, we train a model on familiar words and test its ME bias by asking it to select between a novel and a familiar object when queried with a novel word. To simulate prior acoustic and visual knowledge, we experiment with several initialization strategies using pretrained speech and vision networks. Our findings reveal the ME bias across the different initialization approaches, with a stronger bias in models with more prior (in particular, visual) knowledge. Additional tests confirm the robustness of our results, even when different loss functions are considered. Based on detailed analyses to piece out the model’s representation space, we attribute the ME bias to how familiar and novel classes are distinctly separated in the resulting space.

2022

pdf bib
Multilingual Multimodal Learning with Machine Translated Text
Chen Qiu | Dan Oneață | Emanuele Bugliarello | Stella Frank | Desmond Elliott
Findings of the Association for Computational Linguistics: EMNLP 2022

Most vision-and-language pretraining research focuses on English tasks. However, the creation of multilingual multimodal evaluation datasets (e.g. Multi30K, xGQA, XVNLI, and MaRVL) poses a new challenge in finding high-quality training data that is both multilingual and multimodal. In this paper, we investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data. We call this framework TD-MML: Translated Data for Multilingual Multimodal Learning, and it can be applied to any multimodal dataset and model. We apply it to both pretraining and fine-tuning data with a state-of-the-art model. In order to prevent models from learning from low-quality translated text, we propose two metrics for automatically removing such translations from the resulting datasets. In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning, both at pretraining and fine-tuning.