Dongxu Li


2025

pdf bib
ProBench: Judging Multimodal Foundation Models on Open-ended Multi-domain Expert Tasks
Yan Yang | Dongxu Li | Haoning Wu | Bei Chen | Liu Liu | Liyuan Pan | Junnan Li
Findings of the Association for Computational Linguistics: ACL 2025

Solving expert-level multimodal tasks is a key milestone in general intelligence. As the capabilities of multimodal large language models (MLLMs) continue to evolve, evaluation of frontier multimodal intelligence becomes necessary yet challenging. In this work, we introduce ProBench, a benchmark of open-ended user queries encapsulating professional expertise and advanced reasoning. ProBench consists of 4,000 high-quality samples independently collected from professionals based on their productivity demands. It spans across 10 fields and 56 sub-fields, including science, arts, humanities, coding, mathematics, and creative writing. Experimentally, we evaluate and compare 24 latest models using MLLM-as-a-Judge. Our results reveal that although the best open-source models rival the proprietary ones, they all face significant challenges in visual perception, textual understanding, domain knowledge, and advanced reasoning. Our benchmark is publicly accessible at TBC.

pdf bib
Aria-UI: Visual Grounding for GUI Instructions
Yuhao Yang | Yue Wang | Dongxu Li | Ziyang Luo | Bei Chen | Chao Huang | Junnan Li
Findings of the Association for Computational Linguistics: ACL 2025

Digital agents for automating tasks across different platforms by directly manipulating the GUIs are increasingly important. For these agents, grounding from language instructions to target elements remains a significant challenge due to reliance on HTML or AXTree inputs. In this paper, we introduce Aria-UI, a large multimodal model specifically designed for GUI grounding. Aria-UI adopts a pure-vision approach, eschewing reliance on auxiliary inputs. To adapt to heterogeneous planning instructions, we propose a scalable data pipeline that synthesizes diverse and high-quality instruction samples for grounding. To handle dynamic contexts in task performing, Aria-UI incorporates textual and text-image interleaved action histories, enabling robust context-aware reasoning for grounding. Aria-UI sets new state-of-the-art results across offline and online agent benchmarks, outperforming both vision-only and AXTree-reliant baselines. We release all training data and model checkpoints to foster further research.

2023

pdf bib
LAVIS: A One-stop Library for Language-Vision Intelligence
Dongxu Li | Junnan Li | Hung Le | Guangsen Wang | Silvio Savarese | Steven C.H. Hoi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We introduce LAVIS, an open-source deep learning library for LAnguage-VISion research and applications. LAVIS aims to serve as a one-stop comprehensive library that brings recent advancements in the language-vision field accessible for researchers and practitioners, as well as fertilizing future research and development. It features a unified interface to easily access state-of-the-art image-language, video-language models and common datasets. LAVIS supports training, evaluation and benchmarking on a rich variety of tasks, including multimodal classification, retrieval, captioning, visual question answering, dialogue and pre-training. In the meantime, the library is also highly extensible and configurable, facilitating future development and customization. In this technical report, we describe design principles, key components and functionalities of the library, and also present benchmarking results across common language-vision tasks.

2022

pdf bib
Automatic Gloss Dictionary for Sign Language Learners
Chenchen Xu | Dongxu Li | Hongdong Li | Hanna Suominen | Ben Swift
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

A multi-language dictionary is a fundamental tool for language learning, allowing the learner to look up unfamiliar words. Searching an unrecognized word in the dictionary does not usually require deep knowledge of the target language. However, this is not true for sign language, where gestural elements preclude this type of easy lookup. This paper introduces GlossFinder, an online tool supporting 2, 000 signs to assist language learners in determining the meaning of given signs. Unlike alternative systems of complex inputs, our system requires only that learners imitate the sign in front of a standard webcam. A user study conducted among sign language speakers of varying ability compared our system against existing alternatives and the interviews indicated a clear preference for our new system. This implies that GlossFinder can lower the barrier in sign language learning by addressing the common problem of sign finding and make it accessible to the wider community.

pdf bib
The Devil in Linear Transformer
Zhen Qin | Xiaodong Han | Weixuan Sun | Dongxu Li | Lingpeng Kong | Nick Barnes | Yiran Zhong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Linear transformers aim to reduce the quadratic space-time complexity of vanilla transformers. However, they usually suffer from degraded performances on various tasks and corpus. In this paper, we examine existing kernel-based linear transformers and identify two key issues that lead to such performance gaps: 1) unbounded gradients in the attention computation adversely impact the convergence of linear transformer models; 2) attention dilution which trivially distributes attention scores over long sequences while neglecting neighbouring structures. To address these issues, we first identify that the scaling of attention matrices is the devil in unbounded gradients, which turns out unnecessary in linear attention as we show theoretically and empirically. To this end, we propose a new linear attention that replaces the scaling operation with a normalization to stabilize gradients. For the issue of attention dilution, we leverage a diagonal attention to confine attention to only neighbouring tokens in early layers. Benefiting from the stable gradients and improved attention, our new linear transformer model, transNormer, demonstrates superior performance on text classification and language modeling tasks, as well as on the challenging Long-Range Arena benchmark, surpassing vanilla transformer and existing linear variants by a clear margin while being significantly more space-time efficient. The code is available at https://github.com/OpenNLPLab/Transnormer .