This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The debate surrounding gun control and gun regulation in the United States has intensified in the wake of numerous mass shooting events. As perspectives on this matter vary, it becomes increasingly important to comprehend individuals’ positions. Stance detection, the task of determining an author’s position towards a proposition or target, has gained attention for its potential use in understanding public perceptions towards controversial topics and identifying the best strategies to address public concerns. In this paper, we present GunStance, a dataset of tweets pertaining to shooting events, focusing specifically on the controversial topics of “banning guns” versus “regulating guns.” The tweets in the dataset are sourced from discussions on Twitter following various shooting incidents in the United States. Amazon Mechanical Turk was used to manually annotate a subset of the tweets relevant to the targets of interest (“banning guns” and “regulating guns”) into three classes: In-Favor, Against, and Neutral. The remaining unlabeled tweets are included in the dataset to facilitate studies on semi-supervised learning (SSL) approaches that can help address the scarcity of the labeled data in stance detection tasks. Furthermore, we propose a hybrid approach that combines curriculum-based SSL and Large Language Models (LLM), and show that the proposed approach outperforms supervised, semi-supervised, and LLM-based zero-shot models in most experiments on our assembled dataset.
Identification of fine-grained location mentions in crisis tweets is central in transforming situational awareness information extracted from social media into actionable information. Most prior works have focused on identifying generic locations, without considering their specific types. To facilitate progress on the fine-grained location identification task, we assemble two tweet crisis datasets and manually annotate them with specific location types. The first dataset contains tweets from a mixed set of crisis events, while the second dataset contains tweets from the global COVID-19 pandemic. We investigate the performance of state-of-the-art deep learning models for sequence tagging on these datasets, in both in-domain and cross-domain settings.
During natural disasters, people often use social media platforms, such as Twitter, to post information about casualties and damage produced by disasters. This information can help relief authorities gain situational awareness in nearly real time, and enable them to quickly distribute resources where most needed. However, annotating data for this purpose can be burdensome, subjective and expensive. In this paper, we investigate how to leverage the copious amounts of unlabeled data generated on social media by disaster eyewitnesses and affected individuals during disaster events. To this end, we propose a semi-supervised learning approach to improve the performance of neural models on several multimodal disaster tweet classification tasks. Our approach shows significant improvements, obtaining up to 7.7% improvements in F-1 in low-data regimes and 1.9% when using the entire training data. We make our code and data publicly available at https://github.com/iustinsirbu13/multimodal-ssl-for-disaster-tweet-classification.
The prevalence of the COVID-19 pandemic in day-to-day life has yielded large amounts of stance detection data on social media sites, as users turn to social media to share their views regarding various issues related to the pandemic, e.g. stay at home mandates and wearing face masks when out in public. We set out to make use of this data by collecting the stance expressed by Twitter users, with respect to topics revolving around the pandemic. We annotate a new stance detection dataset, called COVID-19-Stance. Using this newly annotated dataset, we train several established stance detection models to ascertain a baseline performance for this specific task. To further improve the performance, we employ self-training and domain adaptation approaches to take advantage of large amounts of unlabeled data and existing stance detection datasets. The dataset, code, and other resources are available on GitHub.
Training a robust and reliable deep learning model requires a large amount of data. In the crisis domain, building deep learning models to identify actionable information from the huge influx of data posted by eyewitnesses of crisis events on social media, in a time-critical manner, is central for fast response and relief operations. However, building a large, annotated dataset to train deep learning models is not always feasible in a crisis situation. In this paper, we investigate a multi-task learning approach to concurrently leverage available annotated data for several related tasks from the crisis domain to improve the performance on a main task with limited annotated data. Specifically, we focus on using multi-task learning to improve the performance on the task of identifying location mentions in crisis tweets.
Distinguishing informative and actionable messages from a social media platform like Twitter is critical for facilitating disaster management. For this purpose, we compile a multilingual dataset of over 130K samples for multi-label classification of disaster-related tweets. We present a masking-based loss function for partially labelled samples and demonstrate the effectiveness of Manifold Mixup in the text domain. Our main model is based on Multilingual BERT, which we further improve with Manifold Mixup. We show that our model generalizes to unseen disasters in the test set. Furthermore, we analyze the capability of our model for zero-shot generalization to new languages. Our code, dataset, and other resources are available on Github.