Deheng Ye
2024
LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay
Yihuai Lan
|
Zhiqiang Hu
|
Lei Wang
|
Yang Wang
|
Deheng Ye
|
Peilin Zhao
|
Ee-Peng Lim
|
Hui Xiong
|
Hao Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents’ social behaviors. Results affirm the framework’s effectiveness in creating adaptive agents and suggest LLM-based agents’ potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field’s research and applications.
Language Model Adaption for Reinforcement Learning with Natural Language Action Space
Jiangxing Wang
|
Jiachen Li
|
Xiao Han
|
Deheng Ye
|
Zongqing Lu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reinforcement learning with natural language action space often suffers from the curse of dimensionality due to the combinatorial nature of the natural language. Previous research leverages pretrained language models to capture action semantics and reduce the size of the action space. However, since pretrained models are typically trained on general corpora, there can be an unpredictable mismatch between the priors encoded in pretrained models and the characteristics of the specific RL environment. To address this issue, we propose Mutual-Information Regularized Policy Optimization, MIPO. MIPO enables implicit and dynamic reduction of the action space. Starting from the prior provided by the pretrained language model, our method dynamically adjusts the prior during the learning process based on the guidance of mutual information regularization. Theoretically, we demonstrate that this policy optimization process leads to the monotonic improvement on the mutual-information regularized RL objective. Empirically, we conduct experiments in various environments and demonstrate the effectiveness of MIPO.
Search
Co-authors
- Yihuai Lan 1
- Zhiqiang Hu 1
- Lei Wang 1
- Yang Wang 1
- Peilin Zhao 1
- show all...