David Palfreyman


2024

pdf
ZAEBUC-Spoken: A Multilingual Multidialectal Arabic-English Speech Corpus
Injy Hamed | Fadhl Eryani | David Palfreyman | Nizar Habash
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We present ZAEBUC-Spoken, a multilingual multidialectal Arabic-English speech corpus. The corpus comprises twelve hours of Zoom meetings involving multiple speakers role-playing a work situation where Students brainstorm ideas for a certain topic and then discuss it with an Interlocutor. The meetings cover different topics and are divided into phases with different language setups. The corpus presents a challenging set for automatic speech recognition (ASR), including two languages (Arabic and English) with Arabic spoken in multiple variants (Modern Standard Arabic, Gulf Arabic, and Egyptian Arabic) and English used with various accents. Adding to the complexity of the corpus, there is also code-switching between these languages and dialects. As part of our work, we take inspiration from established sets of transcription guidelines to present a set of guidelines handling issues of conversational speech, code-switching and orthography of both languages. We further enrich the corpus with two layers of annotations; (1) dialectness level annotation for the portion of the corpus where mixing occurs between different variants of Arabic, and (2) automatic morphological annotations, including tokenization, lemmatization, and part-of-speech tagging.

2022

pdf
ZAEBUC: An Annotated Arabic-English Bilingual Writer Corpus
Nizar Habash | David Palfreyman
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We present ZAEBUC, an annotated Arabic-English bilingual writer corpus comprising short essays by first-year university students at Zayed University in the United Arab Emirates. We describe and discuss the various guidelines and pipeline processes we followed to create the annotations and quality check them. The annotations include spelling and grammar correction, morphological tokenization, Part-of-Speech tagging, lemmatization, and Common European Framework of Reference (CEFR) ratings. All of the annotations are done on Arabic and English texts using consistent guidelines as much as possible, with tracked alignments among the different annotations, and to the original raw texts. For morphological tokenization, POS tagging, and lemmatization, we use existing automatic annotation tools followed by manual correction. We also present various measurements and correlations with preliminary insights drawn from the data and annotations. The publicly available ZAEBUC corpus and its annotations are intended to be the stepping stones for additional annotations.