Chi Chen


2025

pdf bib
ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
Xuanle Zhao | Xianzhen Luo | Qi Shi | Chi Chen | Shuo Wang | Zhiyuan Liu | Maosong Sun
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose ChartCoder, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce Chart2Code-160k, the first large-scale and diverse dataset for chart-to-code generation, and propose the Snippet-of-Thought (SoT) method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code is available at https://github.com/thunlp/ChartCoder.

pdf bib
ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models
Ziyue Wang | Chi Chen | Fuwen Luo | Yurui Dong | Yuanchi Zhang | Yuzhuang Xu | Xiaolong Wang | Peng Li | Yang Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Active perception, a crucial human capability, involves setting a goal based on the current understanding of the environment and performing actions to achieve that goal. Despite significant efforts in evaluating Multimodal Large Language Models (MLLMs), active perception has been largely overlooked. To address this gap, we propose a novel benchmark named ActiView to evaluate active perception in MLLMs. We focus on a specialized form of Visual Question Answering (VQA) that eases and quantifies the evaluation yet challenging for existing MLLMs. Meanwhile, intermediate reasoning behaviors of models are also discussed. Given an image, we restrict the perceptual field of a model, requiring it to actively zoom or shift its perceptual field based on reasoning to answer the question successfully. We conduct extensive evaluation over 30 models, including proprietary and open-source models, and observe that restricted perceptual fields play a significant role in enabling active perception. Results reveal a significant gap in the active perception capability of MLLMs, indicating that this area deserves more attention. We hope that ActiView could help develop methods for MLLMs to understand multimodal inputs in more natural and holistic ways.

pdf bib
ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs’ Capability via Chart Editing
Xuanle Zhao | Xuexin Liu | Yang Haoyue | Xianzhen Luo | Fanhu Zeng | Jianling Li | Qi Shi | Chi Chen
Findings of the Association for Computational Linguistics: ACL 2025

Although multimodal large language models (MLLMs) show promise in generating chart rendering code, editing charts via code presents a greater challenge. This task demands MLLMs to integrate chart understanding and reasoning capacities, which are labor-intensive. While many MLLMs claim such editing capabilities, current evaluations rely on limited case studies, highlighting the urgent need for a comprehensive evaluation framework.In this work, we propose ChartEdit, a new high-quality benchmark designed for chart editing tasks. This benchmark comprises 1,405 diverse editing instructions applied to 233 real-world charts, with each instruction-chart instance having been manually annotated and validated for accuracy. Utilizing ChartEdit, we evaluate the performance of 10 mainstream MLLMs across two types of experiments at both the code and chart levels.The results suggest that large-scale models can generate code to produce images that partially match the reference images.However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only 59.96, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.

pdf bib
Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
You Li | Heyu Huang | Chi Chen | Kaiyu Huang | Chao Huang | Zonghao Guo | Zhiyuan Liu | Jinan Xu | Yuhua Li | Ruixuan Li | Maosong Sun
Findings of the Association for Computational Linguistics: ACL 2025

The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 24.94% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.

2024

pdf bib
CODIS: Benchmarking Context-dependent Visual Comprehension for Multimodal Large Language Models
Fuwen Luo | Chi Chen | Zihao Wan | Zhaolu Kang | Qidong Yan | Yingjie Li | Xiaolong Wang | Siyu Wang | Ziyue Wang | Xiaoyue Mi | Peng Li | Ning Ma | Maosong Sun | Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal large language models (MLLMs) have demonstrated promising results in a variety of tasks that combine vision and language. As these models become more integral to research and applications, conducting comprehensive evaluations of their capabilities has grown increasingly important. However, most existing benchmarks fail to consider that, in certain situations, images need to be interpreted within a broader context. In this work, we introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension. Our findings indicate that MLLMs consistently fall short of human performance on this benchmark. Further analysis confirms that these models struggle to effectively extract and utilize contextual information to improve their understanding of images. This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.

pdf bib
Browse and Concentrate: Comprehending Multimodal Content via Prior-LLM Context Fusion
Ziyue Wang | Chi Chen | Yiqi Zhu | Fuwen Luo | Peng Li | Ming Yan | Ji Zhang | Fei Huang | Maosong Sun | Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the bloom of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks. However, they fall short to comprehend context involving multiple images. A primary reason for this shortcoming is that the visual features for each images are encoded individually by frozen encoders before feeding into the LLM backbone, lacking awareness of other images and the multimodal instructions. We term this issue as prior-LLM modality isolation and propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion prior to feeding the features into LLMs. This paradigm initially “browses” through the inputs for essential insights, and then revisits the inputs to “concentrate” on crucial details, guided by these insights, to achieve a more comprehensive understanding of the multimodal inputs. Additionally, we develop training strategies specifically to enhance the understanding of multi-image inputs. Our method markedly boosts the performance on 7 multi-image scenarios, contributing to increments on average accuracy by 2.13% and 7.60% against strong MLLMs baselines with 3B and 11B LLMs, respectively.

pdf bib
Model Composition for Multimodal Large Language Models
Chi Chen | Yiyang Du | Zheng Fang | Ziyue Wang | Fuwen Luo | Peng Li | Ming Yan | Ji Zhang | Fei Huang | Maosong Sun | Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.

2023

pdf bib
Weakly Supervised Vision-and-Language Pre-training with Relative Representations
Chi Chen | Peng Li | Maosong Sun | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Weakly supervised vision-and-language pre-training (WVLP), which learns cross-modal representations with limited cross-modal supervision, has been shown to effectively reduce the data cost of pre-training while maintaining decent performance on downstream tasks. However, current WVLP methods use only local descriptions of images, i.e., object tags, as cross-modal anchors to construct weakly-aligned image-text pairs for pre-training. This affects the data quality and thus the effectiveness of pre-training. In this paper, we propose to directly take a small number of aligned image-text pairs as anchors, and represent each unaligned image and text by its similarities to these anchors, i.e., relative representations. We build a WVLP framework based on the relative representations, namely RELIT, which collects high-quality weakly-aligned image-text pairs from large-scale image-only and text-only data for pre-training through relative representation-based retrieval and generation. Experiments on four downstream tasks show that RELIT achieves new state-of-the-art results under the weakly supervised setting.

pdf bib
Filling the Image Information Gap for VQA: Prompting Large Language Models to Proactively Ask Questions
Ziyue Wang | Chi Chen | Peng Li | Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) demonstrate impressive reasoning ability and the maintenance of world knowledge not only in natural language tasks, but also in some vision-language tasks such as open-domain knowledge-based visual question answering (OK-VQA). As images are invisible to LLMs, researchers convert images to text to engage LLMs into the visual question reasoning procedure. This leads to discrepancies between images and their textual representations presented to LLMs, which consequently impedes final reasoning performance. To fill the information gap and better leverage the reasoning capability, we design a framework that enables LLMs to proactively ask relevant questions to unveil more details in the image, along with filters for refining the generated information. We validate our idea on OK-VQA and A-OKVQA. Our method continuously boosts the performance of baselines methods by an average gain of 2.15% on OK-VQA, and achieves consistent improvements across different LLMs.

2022

pdf bib
End-to-End Unsupervised Vision-and-Language Pre-training with Referring Expression Matching
Chi Chen | Peng Li | Maosong Sun | Yang Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recently there has been an emerging interest in unsupervised vision-and-language pre-training (VLP) that learns multimodal representations without parallel image-caption data. These pioneering works significantly reduce the cost of VLP on data collection and achieve promising results compared to supervised VLP. However, existing unsupervised VLP methods take as input pre-extracted region-based visual features from external object detectors, which both limits flexibility and reduces computational efficiency. In this paper, we explore end-to-end unsupervised VLP with a vision encoder to directly encode images. The vision encoder is pre-trained on image-only data and jointly optimized during multimodal pre-training. To further enhance the learned cross-modal features, we propose a novel pre-training task that predicts which patches contain an object referred to in natural language from the encoded visual features. Extensive experiments on four vision-and-language tasks show that our approach outperforms previous unsupervised VLP methods and obtains new state-of-the-art results.

2021

pdf bib
Mask-Align: Self-Supervised Neural Word Alignment
Chi Chen | Maosong Sun | Yang Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Word alignment, which aims to align translationally equivalent words between source and target sentences, plays an important role in many natural language processing tasks. Current unsupervised neural alignment methods focus on inducing alignments from neural machine translation models, which does not leverage the full context in the target sequence. In this paper, we propose Mask-Align, a self-supervised word alignment model that takes advantage of the full context on the target side. Our model masks out each target token and predicts it conditioned on both source and the remaining target tokens. This two-step process is based on the assumption that the source token contributing most to recovering the masked target token should be aligned. We also introduce an attention variant called leaky attention, which alleviates the problem of unexpected high cross-attention weights on special tokens such as periods. Experiments on four language pairs show that our model outperforms previous unsupervised neural aligners and obtains new state-of-the-art results.