Chao Weng


2025

pdf bib
LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement
Boyi Kang | Xinfa Zhu | Zihan Zhang | Zhen Ye | Mingshuai Liu | Ziqian Wang | Yike Zhu | Guobin Ma | Jun Chen | Longshuai Xiao | Chao Weng | Wei Xue | Lei Xie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.

2024

pdf bib
Make-A-Voice: Revisiting Voice Large Language Models as Scalable Multilingual and Multitask Learners
Rongjie Huang | Chunlei Zhang | Yongqi Wang | Dongchao Yang | Jinchuan Tian | Zhenhui Ye | Luping Liu | Zehan Wang | Ziyue Jiang | Xuankai Chang | Jiatong Shi | Chao Weng | Zhou Zhao | Dong Yu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have successfully served as a general-purpose interface across multiple tasks and languages, while the adaptation of voice LLMs is mostly designed for specific purposes (either single-task or monolingual), where the advantages of LLMs especially for low-resource language processing and zero-shot task generalization are less exploited in the audio community. To bridge the gap, we introduce Make-A-Voice as a multi-modal voice LLM and conduct a comprehensive study on its capability to deal with multiple tasks/languages. When trained on ~200K hours of 6-language data for 4 voice generation applications, Make-A-Voice emerges notable advantages: 1) as scalable learners to improve performance with end-to-end local and global multiscale transformers; and 2) as multitask learners by adjusting prompts to share common knowledge across modalities (speech/singing) and present in-context learning abilities by generalizing to unseen tasks not explicitly train on; 3) as multilingual learners to alleviate data scarcity of low-resource languages by including rich-resource language training data. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models in monolingual/cross-lingual voice generation. Audio samples are available at https://M-Voice.github.io