Chandan K. Reddy

Also published as: Chandan K Reddy


2025

pdf bib
Mitigating Selection Bias with Node Pruning and Auxiliary Options
Hyeong Kyu Choi | Weijie Xu | Chi Xue | Stephanie Eckman | Chandan K. Reddy
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) often exhibit systematic preferences for certain answer choices when responding to multiple-choice questions—a behavior known as selection bias. This bias reduces the accuracy and reliability of LLM outputs, limiting their usefulness in decision-critical applications. While prior work has focused on adjusting model inputs or outputs to mitigate this issue, our work takes a fundamentally different approach by identifying and removing the internal sources of bias. We introduce two methods: Bias Node Pruning (BNP), which prunes parameters that contribute to selection bias, and Auxiliary Option Injection (AOI), which introduces an additional answer choice to reduce bias in both white-box and black-box settings. To address the shortcomings of existing evaluation metrics, we propose Choice Kullback-Leibler Divergence (CKLD), a new metric that captures distributional imbalances in model predictions. Experiments on three LLMs across multiple datasets demonstrate that our methods consistently improve answer accuracy while reducing selection bias, providing a robust solution for both open- and closed-source models.

pdf bib
H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables
Nikhil Abhyankar | Vivek Gupta | Dan Roth | Chandan K. Reddy
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Tabular reasoning involves interpreting natural language queries about tabular data, which presents a unique challenge of combining language understanding with structured data analysis. Existing methods employ either textual reasoning, which excels in semantic interpretation but struggles with mathematical operations, or symbolic reasoning, which handles computations well but lacks semantic understanding. This paper introduces a novel algorithm H-STAR that integrates both symbolic and semantic (textual) approaches in a two-stage process to address these limitations. H-STAR employs: (1) step-wise table extraction using ‘multi-view’ column retrieval followed by row extraction, and (2) adaptive reasoning that adapts reasoning strategies based on question types, utilizing semantic reasoning for direct lookup and complex lexical queries while augmenting textual reasoning with symbolic reasoning support for quantitative and logical tasks. Our extensive experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three tabular question-answering (QA) and fact-verification datasets, underscoring its effectiveness and efficiency.

2024

pdf bib
ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
Akshita Jha | Vinodkumar Prabhakaran | Remi Denton | Sarah Laszlo | Shachi Dave | Rida Qadri | Chandan K. Reddy | Sunipa Dev
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent studies have shown that Text-to-Image (T2I) model generations can reflect social stereotypes present in the real world. However, existing approaches for evaluating stereotypes have a noticeable lack of coverage of global identity groups and their associated stereotypes. To address this gap, we introduce the ViSAGe (Visual Stereotypes Around the Globe) dataset to enable the evaluation of known nationality-based stereotypes in T2I models, across 135 nationalities. We enrich an existing textual stereotype resource by distinguishing between stereotypical associations that are more likely to have visual depictions, such as ‘sombrero’, from those that are less visually concrete, such as ‘attractive’. We demonstrate ViSAGe’s utility through a multi-faceted evaluation of T2I generations. First, we show that stereotypical attributes in ViSAGe are thrice as likely to be present in generated images of corresponding identities as compared to other attributes, and that the offensiveness of these depictions is especially higher for identities from Africa, South America, and South East Asia. Second, we assess the ‘stereotypical pull’ of visual depictions of identity groups, which reveals how the ‘default’ representations of all identity groups in ViSAGe have a pull towards stereotypical depictions, and that this pull is even more prominent for identity groups from the Global South. CONTENT WARNING: Some examples contain offensive stereotypes.

2023

pdf bib
SeeGULL: A Stereotype Benchmark with Broad Geo-Cultural Coverage Leveraging Generative Models
Akshita Jha | Aida Mostafazadeh Davani | Chandan K Reddy | Shachi Dave | Vinodkumar Prabhakaran | Sunipa Dev
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Stereotype benchmark datasets are crucial to detect and mitigate social stereotypes about groups of people in NLP models. However, existing datasets are limited in size and coverage, and are largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies gain hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, built by utilizing generative capabilities of large language models such as PaLM, and GPT-3, and leveraging a globally diverse rater pool to validate the prevalence of those stereotypes in society. SeeGULL is in English, and contains stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents, as well as state-level identities within the US and India. We also include fine-grained offensiveness scores for different stereotypes and demonstrate their global disparities. Furthermore, we include comparative annotations about the same groups by annotators living in the region vs. those that are based in North America, and demonstrate that within-region stereotypes about groups differ from those prevalent in North America.

2020

pdf bib
Question Answering with Long Multiple-Span Answers
Ming Zhu | Aman Ahuja | Da-Cheng Juan | Wei Wei | Chandan K. Reddy
Findings of the Association for Computational Linguistics: EMNLP 2020

Answering questions in many real-world applications often requires complex and precise information excerpted from texts spanned across a long document. However, currently no such annotated dataset is publicly available, which hinders the development of neural question-answering (QA) systems. To this end, we present MASH-QA, a Multiple Answer Spans Healthcare Question Answering dataset from the consumer health domain, where answers may need to be excerpted from multiple, non-consecutive parts of text spanned across a long document. We also propose MultiCo, a neural architecture that is able to capture the relevance among multiple answer spans, by using a query-based contextualized sentence selection approach, for forming the answer to the given question. We also demonstrate that conventional QA models are not suitable for this type of task and perform poorly in this setting. Extensive experiments are conducted, and the experimental results confirm the proposed model significantly outperforms the state-of-the-art QA models in this multi-span QA setting.

2019

pdf bib
LeafNATS: An Open-Source Toolkit and Live Demo System for Neural Abstractive Text Summarization
Tian Shi | Ping Wang | Chandan K. Reddy
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Neural abstractive text summarization (NATS) has received a lot of attention in the past few years from both industry and academia. In this paper, we introduce an open-source toolkit, namely LeafNATS, for training and evaluation of different sequence-to-sequence based models for the NATS task, and for deploying the pre-trained models to real-world applications. The toolkit is modularized and extensible in addition to maintaining competitive performance in the NATS task. A live news blogging system has also been implemented to demonstrate how these models can aid blog/news editors by providing them suggestions of headlines and summaries of their articles.