Ceren Budak
2025
When People are Floods: Analyzing Dehumanizing Metaphors in Immigration Discourse with Large Language Models
Julia Mendelsohn
|
Ceren Budak
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Metaphor, discussing one concept in terms of another, is abundant in politics and can shape how people understand important issues. We develop a computational approach to measure metaphorical language, focusing on immigration discourse on social media. Grounded in qualitative social science research, we identify seven concepts evoked in immigration discourse (e.g. water or vermin). We propose and evaluate a novel technique that leverages both word-level and document-level signals to measure metaphor with respect to these concepts. We then study the relationship between metaphor, political ideology, and user engagement in 400K US tweets about immigration. While conservatives tend to use dehumanizing metaphors more than liberals, this effect varies widely across concepts. Moreover, creature-related metaphor is associated with more retweets, especially for liberal authors. Our work highlights the potential for computational methods to complement qualitative approaches in understanding subtle and implicit language in political discourse.
2021
Modeling Framing in Immigration Discourse on Social Media
Julia Mendelsohn
|
Ceren Budak
|
David Jurgens
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
The framing of political issues can influence policy and public opinion. Even though the public plays a key role in creating and spreading frames, little is known about how ordinary people on social media frame political issues. By creating a new dataset of immigration-related tweets labeled for multiple framing typologies from political communication theory, we develop supervised models to detect frames. We demonstrate how users’ ideology and region impact framing choices, and how a message’s framing influences audience responses. We find that the more commonly-used issue-generic frames obscure important ideological and regional patterns that are only revealed by immigration-specific frames. Furthermore, frames oriented towards human interests, culture, and politics are associated with higher user engagement. This large-scale analysis of a complex social and linguistic phenomenon contributes to both NLP and social science research.