Chuanqiang Zhang


2022

pdf bib
Findings of the Third Workshop on Automatic Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Haifeng Wang | Liang Huang | Qun Liu | Julia Ive | Wolfgang Macherey
Proceedings of the Third Workshop on Automatic Simultaneous Translation

This paper reports the results of the shared task we hosted on the Third Workshop of Automatic Simultaneous Translation (AutoSimTrans). The shared task aims to promote the development of text-to-text and speech-to-text simultaneous translation, and includes Chinese-English and English-Spanish tracks. The number of systems submitted this year has increased fourfold compared with last year. Additionally, the top 1 ranked system in the speech-to-text track is the first end-to-end submission we have received in the past three years, which has shown great potential. This paper reports the results and descriptions of the 14 participating teams, compares different evaluation metrics, and revisits the ranking method.

2021

pdf
Correcting Chinese Spelling Errors with Phonetic Pre-training
Ruiqing Zhang | Chao Pang | Chuanqiang Zhang | Shuohuan Wang | Zhongjun He | Yu Sun | Hua Wu | Haifeng Wang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
BSTC: A Large-Scale Chinese-English Speech Translation Dataset
Ruiqing Zhang | Xiyang Wang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Zhi Li | Haifeng Wang | Ying Chen | Qinfei Li
Proceedings of the Second Workshop on Automatic Simultaneous Translation

This paper presents BSTC (Baidu Speech Translation Corpus), a large-scale Chinese-English speech translation dataset. This dataset is constructed based on a collection of licensed videos of talks or lectures, including about 68 hours of Mandarin data, their manual transcripts and translations into English, as well as automated transcripts by an automatic speech recognition (ASR) model. We have further asked three experienced interpreters to simultaneously interpret the testing talks in a mock conference setting. This corpus is expected to promote the research of automatic simultaneous translation as well as the development of practical systems. We have organized simultaneous translation tasks and used this corpus to evaluate automatic simultaneous translation systems.

pdf
Findings of the Second Workshop on Automatic Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Haifeng Wang
Proceedings of the Second Workshop on Automatic Simultaneous Translation

This paper presents the results of the shared task of the 2nd Workshop on Automatic Simultaneous Translation (AutoSimTrans). The task includes two tracks, one for text-to-text translation and one for speech-to-text, requiring participants to build systems to translate from either the source text or speech into the target text. Different from traditional machine translation, the AutoSimTrans shared task evaluates not only translation quality but also latency. We propose a metric “Monotonic Optimal Sequence” (MOS) considering both quality and latency to rank the submissions. We also discuss some important open issues in simultaneous translation.

2020

pdf bib
Dynamic Sentence Boundary Detection for Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang
Proceedings of the First Workshop on Automatic Simultaneous Translation

Simultaneous Translation is a great challenge in which translation starts before the source sentence finished. Most studies take transcription as input and focus on balancing translation quality and latency for each sentence. However, most ASR systems can not provide accurate sentence boundaries in realtime. Thus it is a key problem to segment sentences for the word streaming before translation. In this paper, we propose a novel method for sentence boundary detection that takes it as a multi-class classification task under the end-to-end pre-training framework. Experiments show significant improvements both in terms of translation quality and latency.

pdf
Learning Adaptive Segmentation Policy for Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Haifeng Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Balancing accuracy and latency is a great challenge for simultaneous translation. To achieve high accuracy, the model usually needs to wait for more streaming text before translation, which results in increased latency. However, keeping low latency would probably hurt accuracy. Therefore, it is essential to segment the ASR output into appropriate units for translation. Inspired by human interpreters, we propose a novel adaptive segmentation policy for simultaneous translation. The policy learns to segment the source text by considering possible translations produced by the translation model, maintaining consistency between the segmentation and translation. Experimental results on Chinese-English and German-English translation show that our method achieves a better accuracy-latency trade-off over recently proposed state-of-the-art methods.

2019

pdf
STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework
Mingbo Ma | Liang Huang | Hao Xiong | Renjie Zheng | Kaibo Liu | Baigong Zheng | Chuanqiang Zhang | Zhongjun He | Hairong Liu | Xing Li | Hua Wu | Haifeng Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Simultaneous translation, which translates sentences before they are finished, is use- ful in many scenarios but is notoriously dif- ficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we pro- pose a novel prefix-to-prefix framework for si- multaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very sim- ple yet surprisingly effective “wait-k” policy trained to generate the target sentence concur- rently with the source sentence, but always k words behind. Experiments show our strat- egy achieves low latency and reasonable qual- ity (compared to full-sentence translation) on 4 directions: zh↔en and de↔en.