Chenming Tang


2024

pdf
SCOI: Syntax-augmented Coverage-based In-context Example Selection for Machine Translation
Chenming Tang | Zhixiang Wang | Yunfang Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In-context learning (ICL) greatly improves the performance of large language models (LLMs) on various down-stream tasks, where the improvement highly depends on the quality of demonstrations. In this work, we introduce syntactic knowledge to select better in-context examples for machine translation (MT). We propose a new strategy, namely Syntax-augmented COverage-based In-context example selection (SCOI), leveraging the deep syntactic structure beyond conventional word matching. Specifically, we measure the set-level syntactic coverage by computing the coverage of polynomial terms with the help of a simplified tree-to-polynomial algorithm, and lexical coverage using word overlap. Furthermore, we devise an alternate selection approach to combine both coverage measures, taking advantage of syntactic and lexical information. We conduct experiments with two multi-lingual LLMs on six translation directions. Empirical results show that our proposed SCOI obtains the highest average COMET score among all learning-free methods, indicating that combining syntactic and lexical coverage successfully helps to select better in-context examples for MT. Our code is available at https://github.com/JamyDon/SCOI.

pdf
Ungrammatical-syntax-based In-context Example Selection for Grammatical Error Correction
Chenming Tang | Fanyi Qu | Yunfang Wu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In the era of large language models (LLMs), in-context learning (ICL) stands out as an effective prompting strategy that explores LLMs’ potency across various tasks. However, applying LLMs to grammatical error correction (GEC) is still a challenging task. In this paper, we propose a novel ungrammatical-syntax-based in-context example selection strategy for GEC. Specifically, we measure similarity of sentences based on their syntactic structures with diverse algorithms, and identify optimal ICL examples sharing the most similar ill-formed syntax to the test input. Additionally, we carry out a two-stage process to further improve the quality of selection results. On benchmark English GEC datasets, empirical results show that our proposed ungrammatical-syntax-based strategies outperform commonly-used word-matching or semantics-based methods with multiple LLMs. This indicates that for a syntax-oriented task like GEC, paying more attention to syntactic information can effectively boost LLMs’ performance. Our code is available at https://github.com/JamyDon/SynICL4GEC.

2023

pdf
Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?
Chenming Tang | Xiuyu Wu | Yunfang Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.