Carlos Alejandro Aguirre


2024

pdf
Transferring Fairness using Multi-Task Learning with Limited Demographic Information
Carlos Alejandro Aguirre | Mark Dredze
Proceedings of the Third Workshop on NLP for Positive Impact

Training supervised machine learning systems with a fairness loss can improve prediction fairness across different demographic groups. However, doing so requires demographic annotations for training data, without which we cannot produce debiased classifiers for most tasks. Drawing inspiration from transfer learning methods, we investigate whether we can utilize demographic data from a related task to improve the fairness of a target task. We adapt a single-task fairness loss to a multi-task setting to exploit demographic labels from a related task in debiasing a target task, and demonstrate that demographic fairness objectives transfer fairness within a multi-task framework. Additionally, we show that this approach enables intersectional fairness by transferring between two datasets with different single-axis demographics. We explore different data domains to show how our loss can improve fairness domains and tasks.

pdf
Selecting Shots for Demographic Fairness in Few-Shot Learning with Large Language Models
Carlos Alejandro Aguirre | Kuleen Sasse | Isabel Alyssa Cachola | Mark Dredze
Proceedings of the Third Workshop on NLP for Positive Impact

Recently, work in NLP has shifted to few-shot (in-context) learning, with large language models (LLMs) performing well across a range of tasks. However, while fairness evaluations have become a standard for supervised methods, little is known about the fairness of LLMs as prediction systems. Further, common standard methods for fairness involve access to model weights or are applied during finetuning, which are not applicable in few-shot learning. Do LLMs exhibit prediction biases when used for standard NLP tasks?In this work, we analyze the effect of shots, which directly affect the performance of models, on the fairness of LLMs as NLP classification systems. We consider how different shot selection strategies, both existing and new demographically sensitive methods, affect model fairness across three standard fairness datasets. We find that overall the performance of LLMs is not indicative of their fairness, and there is not a single method that fits all scenarios. In light of these facts, we discuss how future work can include LLM fairness in evaluations.