Bowei He
2025
Sens-Merging: Sensitivity-Guided Parameter Balancing for Merging Large Language Models
Shuqi Liu
|
Han Wu
|
Bowei He
|
Xiongwei Han
|
Mingxuan Yuan
|
Linqi Song
Findings of the Association for Computational Linguistics: ACL 2025
Recent advances in large language models have led to numerous task-specialized fine-tuned variants, creating a need for efficient model merging techniques that preserve specialized capabilities while avoiding costly retraining. While existing task vector-based merging methods show promise, they typically apply uniform coefficients across all parameters, overlooking varying parameter importance both within and across tasks. We present Sens-Merging, a sensitivity-guided coefficient adjustment method that enhances existing model merging techniques by operating at both task-specific and cross-task levels. Our method analyzes parameter sensitivity within individual tasks and evaluates cross-task transferability to determine optimal merging coefficients. Extensive experiments on Mistral 7B and LLaMA2 7B/13B models demonstrate that Sens-Merging significantly improves performance across general knowledge, mathematical reasoning, and code generation tasks. Notably, when combined with existing merging techniques, our method enables merged models to outperform specialized fine-tuned models, particularly in code generation tasks. Our findings reveal important trade-offs between task-specific and cross-task scalings, providing insights for future model merging strategies.
2024
Bi-Chainer: Automated Large Language Models Reasoning with Bidirectional Chaining
Shuqi Liu
|
Bowei He
|
Linqi Song
Findings of the Association for Computational Linguistics: ACL 2024
Large Language Models (LLMs) have shown human-like reasoning abilities but still face challenges in solving complex logical problems. Existing unidirectional chaining methods, such as forward chaining and backward chaining, suffer from issues like low prediction accuracy and efficiency. To address these, we propose a bidirectional chaining method, Bi-Chainer, which dynamically switches to depth-first reasoning in the opposite reasoning direction when it encounters multiple branching options within the current direction. Thus, the intermediate reasoning results can be utilized as guidance to facilitate the reasoning process. We show that Bi-Chainer achieves sizable accuracy boots over unidirectional chaining frameworks on four challenging logical reasoning datasets. Moreover, Bi-Chainer enhances the accuracy of intermediate proof steps and reduces the average number of inference calls, resulting in more efficient and accurate reasoning.