2024
pdf
bib
abs
Language Model Behavior: A Comprehensive Survey
Tyler A. Chang
|
Benjamin K. Bergen
Computational Linguistics, Volume 50, Issue 1 - March 2024
Transformer language models have received widespread public attention, yet their generated text is often surprising even to NLP researchers. In this survey, we discuss over 250 recent studies of English language model behavior before task-specific fine-tuning. Language models possess basic capabilities in syntax, semantics, pragmatics, world knowledge, and reasoning, but these capabilities are sensitive to specific inputs and surface features. Despite dramatic increases in generated text quality as models scale to hundreds of billions of parameters, the models are still prone to unfactual responses, commonsense errors, memorized text, and social biases. Many of these weaknesses can be framed as over-generalizations or under-generalizations of learned patterns in text. We synthesize recent results to highlight what is currently known about large language model capabilities, thus providing a resource for applied work and for research in adjacent fields that use language models.
pdf
bib
abs
Characterizing Learning Curves During Language Model Pre-Training: Learning, Forgetting, and Stability
Tyler A. Chang
|
Zhuowen Tu
|
Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 12
How do language models learn to make predictions during pre-training? To study this, we extract learning curves from five autoregressive English language model pre-training runs, for 1M unseen tokens in context. We observe that the language models generate short repetitive phrases before learning to generate longer and more coherent text. We also find that individual tokens often exhibit sudden increases or decreases in loss that are surprisingly consistent across pre-training runs. To better understand these fluctuations, we quantify the final surprisal, within-run variability, age of acquisition, forgettability, and cross-run variability of learning curves for individual tokens in context. More frequent tokens reach lower final surprisals, exhibit less variability within and across pre-training runs, are learned earlier, and are less likely to be “forgotten” during pre-training. Higher n-gram probabilities further accentuate these effects. Independent of the target token, shorter and more frequent contexts correlate with marginally more stable and quickly acquired predictions. Based on our results, we argue for the existence of sequential learning dependencies between different model capabilities, and we characterize language model learning as early n-gram learning before gradual refinement of tail n-gram predictions.
2023
pdf
bib
abs
Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models
James A. Michaelov
|
Catherine Arnett
|
Tyler A. Chang
|
Benjamin K. Bergen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Abstract grammatical knowledge—of parts of speech and grammatical patterns—is key to the capacity for linguistic generalization in humans. But how abstract is grammatical knowledge in large language models? In the human literature, compelling evidence for grammatical abstraction comes from structural priming. A sentence that shares the same grammatical structure as a preceding sentence is processed and produced more readily. Because confounds exist when using stimuli in a single language, evidence of abstraction is even more compelling from crosslingual structural priming, where use of a syntactic structure in one language primes an analogous structure in another language. We measure crosslingual structural priming in large language models, comparing model behavior to human experimental results from eight crosslingual experiments covering six languages, and four monolingual structural priming experiments in three non-English languages. We find evidence for abstract monolingual and crosslingual grammatical representations in the models that function similarly to those found in humans. These results demonstrate that grammatical representations in multilingual language models are not only similar across languages, but they can causally influence text produced in different languages.
2022
pdf
bib
abs
Do Language Models Make Human-like Predictions about the Coreferents of Italian Anaphoric Zero Pronouns?
James A. Michaelov
|
Benjamin K. Bergen
Proceedings of the 29th International Conference on Computational Linguistics
Some languages allow arguments to be omitted in certain contexts. Yet human language comprehenders reliably infer the intended referents of these zero pronouns, in part because they construct expectations about which referents are more likely. We ask whether Neural Language Models also extract the same expectations. We test whether 12 contemporary language models display expectations that reflect human behavior when exposed to sentences with zero pronouns from five behavioral experiments conducted in Italian by Carminati (2005). We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the human behavior from all the experiments, with others successfully modeling some of the results. This result suggests that human expectations about coreference can be derived from exposure to language, and also indicates features of language models that allow them to better reflect human behavior.
pdf
bib
abs
The Geometry of Multilingual Language Model Representations
Tyler A. Chang
|
Zhuowen Tu
|
Benjamin K. Bergen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
We assess how multilingual language models maintain a shared multilingual representation space while still encoding language-sensitive information in each language. Using XLM-R as a case study, we show that languages occupy similar linear subspaces after mean-centering, evaluated based on causal effects on language modeling performance and direct comparisons between subspaces for 88 languages. The subspace means differ along language-sensitive axes that are relatively stable throughout middle layers, and these axes encode information such as token vocabularies. Shifting representations by language means is sufficient to induce token predictions in different languages. However, we also identify stable language-neutral axes that encode information such as token positions and part-of-speech. We visualize representations projected onto language-sensitive and language-neutral axes, identifying language family and part-of-speech clusters, along with spirals, toruses, and curves representing token position information. These results demonstrate that multilingual language models encode information along orthogonal language-sensitive and language-neutral axes, allowing the models to extract a variety of features for downstream tasks and cross-lingual transfer learning.
pdf
bib
abs
Word Acquisition in Neural Language Models
Tyler A. Chang
|
Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 10
We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words on the MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007). Drawing on studies of word acquisition in children, we evaluate multiple predictors for words’ ages of acquisition in LSTMs, BERT, and GPT-2. We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models, reinforcing the importance of interaction and sensorimotor experience in child language acquisition. Language models rely far more on word frequency than children, but, like children, they exhibit slower learning of words in longer utterances. Interestingly, models follow consistent patterns during training for both unidirectional and bidirectional models, and for both LSTM and Transformer architectures. Models predict based on unigram token frequencies early in training, before transitioning loosely to bigram probabilities, eventually converging on more nuanced predictions. These results shed light on the role of distributional learning mechanisms in children, while also providing insights for more human-like language acquisition in language models.