Boyang Li


2024

pdf
Concept-skill Transferability-based Data Selection for Large Vision-Language Models
Jaewoo Lee | Boyang Li | Sung Ju Hwang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Instruction tuning, or supervised finetuning on extensive task-specific data, is necessary for Large Vision-Language Models (LVLMs) to generalize well across a broad range of vision-language (VL) tasks. However, training on large VL datasets can become prohibitively expensive. In this work, we introduce COINCIDE, an effective and scalable data selection technique that uses a small model as a reference model to select visual instruction tuning data for efficient finetuning of a target LVLM, focusing on diversity and transferability. Specifically, we cluster the training data using internal activations from a small model, which identifies VL concept-skill compositions needed by a target LVLM. We then sample data from these diverse clusters by considering their density and transferability, or the ability to transfer well to other concept-skill compositions. This approach ensures the diversity of these compositions, which is vital for LVLM generalization. Extensive experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines on two distinct datasets: LLaVA-1.5 and Vision-Flan. Using only 20% of the LLaVA-1.5 dataset, COINCIDE achieves performance comparable to the LVLM finetuned on the whole dataset, with 70% reduction of the wall-clock running time. On the Vision-Flan dataset, our method achieves superior results with only 16.7% of the training data.

pdf
Diversify, Rationalize, and Combine: Ensembling Multiple QA Strategies for Zero-shot Knowledge-based VQA
Miaoyu Li | Haoxin Li | Zilin Du | Boyang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Knowledge-based Visual Qustion-answering (K-VQA) often requires the use of background knowledge beyond the image. However, we discover that a single knowledge generation strategy is often insuffcient for all K-VQA questions. To this end, we propose Diversifcation, Evidence Truncation, and Combination for Knowledge-based Elucidation (DietCoke), which utilizes a bundle of complementary question-answering tactics and aggregates their answers using textual rationales. DietCoke comprises of three stages: diversifcation, rationalization, and ensemble. The diversification stage generates three distinctive decision contexts, each leading to its own answer candidate. The rationalization stage generates two rationales, the automatic rationale and the mechanistic rationale, for each answer candidate using decorrelated techniques. Finally, in the ensemble stage, an LLM informed by the rationales selects one answer from the three candidates. Experiments show that DietCoke significantly outperforms state-of-the-art LLM-based baselines by 2.8% on OK-VOA and 4.7% on A-OKVOA and that the strategies in the ensembles are highly complementary.

pdf
A Training Data Recipe to Accelerate A* Search with Language Models
Devaansh Gupta | Boyang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Combining Large Language Models (LLMs) with heuristic search algorithms like A* holds the promise of enhanced LLM reasoning and scalable inference. To accelerate training and reduce computational demands, we investigate the coreset selection problem for the training data of LLM heuristic learning. Few methods to learn the heuristic functions consider the interaction between the search algorithm and the machine learning model. In this work, we empirically disentangle the requirements of A* search algorithm from the requirements of the LLM to generalise on this task. Surprisingly, we find an overlap between their requirements; A* requires more accurate predictions on search nodes near the goal, and LLMs need the same set of nodes for effective generalisation. With these insights, we derive a data-selection distribution for learning LM-based heuristics. On three classical planning domains, maze navigation, Sokoban and sliding tile puzzles, our technique reduces the number of iterations required to find the solutions by up to 15x, with a wall-clock speed-up of search up to 5x. The code has been made available at https://github.com/devaansh100/a_star.

pdf
Multilingual Synopses of Movie Narratives: A Dataset for Vision-Language Story Understanding
Yidan Sun | Jianfei Yu | Boyang Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Story video-text alignment, a core task in computational story understanding, aims to align video clips with corresponding sentences in their descriptions. However, progress on the task has been held back by the scarcity of manually annotated video-text correspondence and the heavy concentration on English narrations of Hollywood movies. To address these issues, in this paper, we construct a large-scale multilingual video story dataset named Multilingual Synopses of Movie Narratives (M-SyMoN), containing 13,166 movie summary videos from 7 languages, as well as manual annotation of fine-grained video-text correspondences for 101.5 hours of video. Training on the human annotated data from SyMoN outperforms the SOTA methods by 15.7 and 16.2 percentage points on Clip Accuracy and Sentence IoU scores, respectively, demonstrating the effectiveness of the annotations. As benchmarks for future research, we create 6 baseline approaches with different multilingual training strategies, compare their performance in both intra-lingual and cross-lingual setups, exemplifying the challenges of multilingual video-text alignment. The dataset is released at:https://github.com/insundaycathy/M-SyMoN

pdf
What Are We Measuring When We Evaluate Large Vision-Language Models? An Analysis of Latent Factors and Biases
Anthony Tiong | Junqi Zhao | Boyang Li | Junnan Li | Steven Hoi | Caiming Xiong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Vision-language (VL) models, pretrained on colossal image-text datasets, have attained broad VL competence that is difficult to evaluate. A common belief is that a small number of VL skills underlie the variety of VL tests. In this paper, we perform a large-scale transfer learning experiment aimed at discovering latent VL skills from data. We reveal interesting characteristics that have important implications for test suite design. First, generation tasks suffer from a length bias, suggesting benchmarks should balance tasks with varying output lengths. Second, we demonstrate that factor analysis successfully identifies reasonable yet surprising VL skill factors, suggesting benchmarks could leverage similar analyses for task selection.Finally, we present a new dataset, OLIVE1, which simulates user instructions in the wild and presents challenges dissimilar to all datasets we tested. Our findings contribute to the design of balanced and broad-coverage vision-language evaluation methods. 1https://github.com/jq-zh/olive-dataset

pdf
Event Causality Is Key to Computational Story Understanding
Yidan Sun | Qin Chao | Boyang Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Cognitive science and symbolic AI research suggest that event causality provides vital information for story understanding. However, machine learning systems for story understanding rarely employ event causality, partially due to the lack of methods that reliably identify open-world causal event relations. Leveraging recent progress in large language models, we present the first method for event causality identification that leads to material improvements in computational story understanding. Our technique sets a new state of the art on the COPES dataset (Wang et al., 2023c) for causal event relation identification. Further, in the downstream story quality evaluation task, the identified causal relations lead to 3.6-16.6% relative improvement on correlation with human ratings. In the multimodal story video-text alignment task, we attain 4.1-10.9% increase on Clip Accuracy and 4.2-13.5% increase on Sentence IoU. The findings indicate substantial untapped potential for event causality in computational story understanding. The codebase is at https://github.com/insundaycathy/Event-Causality-Extraction.

2023

pdf
Is GPT-3 a Good Data Annotator?
Bosheng Ding | Chengwei Qin | Linlin Liu | Yew Ken Chia | Boyang Li | Shafiq Joty | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data annotation is the process of labeling data that could be used to train machine learning models. Having high quality annotation is crucial, as it allows the model to learn the relationship between the input data and the desired output. GPT-3, a large-scale language model developed by OpenAI, has demonstrated im- impressive zero- and few-shot performance on a wide range of NLP tasks. It is therefore natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.

2022

pdf
Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training
Anthony Meng Huat Tiong | Junnan Li | Boyang Li | Silvio Savarese | Steven C.H. Hoi
Findings of the Association for Computational Linguistics: EMNLP 2022

Visual question answering (VQA) is a hallmark of vision and language reasoningand a challenging task under the zero-shot setting.We propose Plug-and-Play VQA (PNP-VQA),a modular framework for zero-shot VQA.In contrast to most existing works, which require substantial adaptation of pretrained language models (PLMs) for the vision modality,PNP-VQA requires no additional training of the PLMs.Instead, we propose to use natural language and network interpretation as an intermediate representation that glues pretrained models together. We first generate question-guided informative image captions,and pass the captions to a PLM as context for question answering.Surpassing end-to-end trained baselines, PNP-VQA achieves state-of-the-art results on zero-shot VQAv2 and GQA. With 11B parameters, it outperforms the 80B-parameter Flamingo model by 8.5% on VQAv2. With 738M PLM parameters, PNP-VQA achieves an improvement of 9.1% on GQA over FewVLM with 740M PLM parameters.

pdf
History-Aware Hierarchical Transformer for Multi-session Open-domain Dialogue System
Tong Zhang | Yong Liu | Boyang Li | Zhiwei Zeng | Pengwei Wang | Yuan You | Chunyan Miao | Lizhen Cui
Findings of the Association for Computational Linguistics: EMNLP 2022

With the evolution of pre-trained language models, current open-domain dialogue systems have achieved great progress in conducting one-session conversations. In contrast, Multi-Session Conversation (MSC), which consists of multiple sessions over a long term with the same user, is under-investigated. In this paper, we propose History-Aware Hierarchical Transformer (HAHT) for multi-session open-domain dialogue. HAHT maintains a long-term memory of history conversations and utilizes history information to understand current conversation context and generate well-informed and context-relevant responses. Specifically, HAHT first encodes history conversation sessions hierarchically into a history memory. Then, HAHT leverages historical information to facilitate the understanding of the current conversation context by encoding the history memory together with the current context with attention-based mechanisms. Finally, to explicitly utilize historical information, HAHT uses a history-aware response generator that switches between a generic vocabulary and a history-aware vocabulary. Experimental results on a large-scale MSC dataset suggest that the proposed HAHT model consistently outperforms baseline models. Human evaluation results support that HAHT generates more human-like, context-relevant, and history-relevant responses than baseline models.

pdf
Improving the Sample Efficiency of Prompt Tuning with Domain Adaptation
Xu Guo | Boyang Li | Han Yu
Findings of the Association for Computational Linguistics: EMNLP 2022

Prompt tuning, or the conditioning of a frozen pretrained language model (PLM) with soft prompts learned from data, has demonstrated impressive performance on a wide range of NLP tasks. However, prompt tuning requires a large training dataset to be effective and is outperformed by finetuning the entire PLM in data-scarce regimes. Previous work (Gu et al., 2022, Vu et al., 2022) proposed to transfer soft prompts pretrained on the source domain to the target domain. In this paper, we explore domain adaptation for prompt tuning, a problem setting where unlabeled data from the target domain are available during pretraining. We propose bOosting Prompt TunIng with doMain Adaptation (OPTIMA), which regularizes the decision boundary to be smooth around regions where source and target data distributions are similar. Extensive experiments demonstrate that OPTIMA significantly enhances the transferability and sample-efficiency of prompt tuning compared to strong baselines. Moreover, in few-shot settings, OPTIMA exceeds full-model tuning by a large margin.

pdf
Toward Knowledge-Enriched Conversational Recommendation Systems
Tong Zhang | Yong Liu | Boyang Li | Peixiang Zhong | Chen Zhang | Hao Wang | Chunyan Miao
Proceedings of the 4th Workshop on NLP for Conversational AI

Conversational Recommendation Systems recommend items through language based interactions with users. In order to generate naturalistic conversations and effectively utilize knowledge graphs (KGs) containing background information, we propose a novel Bag-of-Entities loss, which encourages the generated utterances to mention concepts related to the item being recommended, such as the genre or director of a movie. We also propose an alignment loss to further integrate KG entities into the response generation network. Experiments on the large-scale REDIAL dataset demonstrate that the proposed system consistently outperforms state-of-the-art baselines.

2021

pdf
Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection
Xu Guo | Boyang Li | Han Yu | Chunyan Miao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The existence of multiple datasets for sarcasm detection prompts us to apply transfer learning to exploit their commonality. The adversarial neural transfer (ANT) framework utilizes multiple loss terms that encourage the source-domain and the target-domain feature distributions to be similar while optimizing for domain-specific performance. However, these objectives may be in conflict, which can lead to optimization difficulties and sometimes diminished transfer. We propose a generalized latent optimization strategy that allows different losses to accommodate each other and improves training dynamics. The proposed method outperforms transfer learning and meta-learning baselines. In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.

2018

pdf
Annotating High-Level Structures of Short Stories and Personal Anecdotes
Boyang Li | Beth Cardier | Tong Wang | Florian Metze
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2016

pdf
Multiplicative Representations for Unsupervised Semantic Role Induction
Yi Luan | Yangfeng Ji | Hannaneh Hajishirzi | Boyang Li
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)