2020
pdf
abs
Towards Non-task-specific Distillation of BERT via Sentence Representation Approximation
Bowen Wu
|
Huan Zhang
|
MengYuan Li
|
Zongsheng Wang
|
Qihang Feng
|
Junhong Huang
|
Baoxun Wang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
Recently, BERT has become an essential ingredient of various NLP deep models due to its effectiveness and universal-usability. However, the online deployment of BERT is often blocked by its large-scale parameters and high computational cost. There are plenty of studies showing that the knowledge distillation is efficient in transferring the knowledge from BERT into the model with a smaller size of parameters. Nevertheless, current BERT distillation approaches mainly focus on task-specified distillation, such methodologies lead to the loss of the general semantic knowledge of BERT for universal-usability. In this paper, we propose a sentence representation approximating oriented distillation framework that can distill the pre-trained BERT into a simple LSTM based model without specifying tasks. Consistent with BERT, our distilled model is able to perform transfer learning via fine-tuning to adapt to any sentence-level downstream task. Besides, our model can further cooperate with task-specific distillation procedures. The experimental results on multiple NLP tasks from the GLUE benchmark show that our approach outperforms other task-specific distillation methods or even much larger models, i.e., ELMO, with efficiency well-improved.
pdf
abs
Guiding Variational Response Generator to Exploit Persona
Bowen Wu
|
MengYuan Li
|
Zongsheng Wang
|
Yifu Chen
|
Derek F. Wong
|
Qihang Feng
|
Junhong Huang
|
Baoxun Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Leveraging persona information of users in Neural Response Generators (NRG) to perform personalized conversations has been considered as an attractive and important topic in the research of conversational agents over the past few years. Despite of the promising progress achieved by recent studies in this field, persona information tends to be incorporated into neural networks in the form of user embeddings, with the expectation that the persona can be involved via End-to-End learning. This paper proposes to adopt the personality-related characteristics of human conversations into variational response generators, by designing a specific conditional variational autoencoder based deep model with two new regularization terms employed to the loss function, so as to guide the optimization towards the direction of generating both persona-aware and relevant responses. Besides, to reasonably evaluate the performances of various persona modeling approaches, this paper further presents three direct persona-oriented metrics from different perspectives. The experimental results have shown that our proposed methodology can notably improve the performance of persona-aware response generation, and the metrics are reasonable to evaluate the results.
2019
pdf
abs
Improving the Robustness of Deep Reading Comprehension Models by Leveraging Syntax Prior
Bowen Wu
|
Haoyang Huang
|
Zongsheng Wang
|
Qihang Feng
|
Jingsong Yu
|
Baoxun Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering
Despite the remarkable progress on Machine Reading Comprehension (MRC) with the help of open-source datasets, recent studies indicate that most of the current MRC systems unfortunately suffer from weak robustness against adversarial samples. To address this issue, we attempt to take sentence syntax as the leverage in the answer predicting process which previously only takes account of phrase-level semantics. Furthermore, to better utilize the sentence syntax and improve the robustness, we propose a Syntactic Leveraging Network, which is designed to deal with adversarial samples by exploiting the syntactic elements of a question. The experiment results indicate that our method is promising for improving the generalization and robustness of MRC models against the influence of adversarial samples, with performance well-maintained.
2018
pdf
abs
LSDSCC: a Large Scale Domain-Specific Conversational Corpus for Response Generation with Diversity Oriented Evaluation Metrics
Zhen Xu
|
Nan Jiang
|
Bingquan Liu
|
Wenge Rong
|
Bowen Wu
|
Baoxun Wang
|
Zhuoran Wang
|
Xiaolong Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
It has been proven that automatic conversational agents can be built up using the Endto-End Neural Response Generation (NRG) framework, and such a data-driven methodology requires a large number of dialog pairs for model training and reasonable evaluation metrics for testing. This paper proposes a Large Scale Domain-Specific Conversational Corpus (LSDSCC) composed of high-quality queryresponse pairs extracted from the domainspecific online forum, with thorough preprocessing and cleansing procedures. Also, a testing set, including multiple diverse responses annotated for each query, is constructed, and on this basis, the metrics for measuring the diversity of generated results are further presented. We evaluate the performances of neural dialog models with the widely applied diversity boosting strategies on the proposed dataset. The experimental results have shown that our proposed corpus can be taken as a new benchmark dataset for the NRG task, and the presented metrics are promising to guide the optimization of NRG models by quantifying the diversity of the generated responses reasonably.
pdf
abs
A Prospective-Performance Network to Alleviate Myopia in Beam Search for Response Generation
Zongsheng Wang
|
Yunzhi Bai
|
Bowen Wu
|
Zhen Xu
|
Zhuoran Wang
|
Baoxun Wang
Proceedings of the 27th International Conference on Computational Linguistics
Generative dialog models usually adopt beam search as the inference method to generate responses. However, small-width beam search only focuses on the limited current optima. This deficiency named as myopic bias ultimately suppresses the diversity and probability of generated responses. Although increasing the beam width mitigates the myopic bias, it also proportionally slows down the inference efficiency. To alleviate the myopic bias in small-width beam search, this paper proposes a Prospective-Performance Network (PPN) to predict the future reward of the given partially-generated response, and the future reward is defined by the expectation of the partial response appearing in the top-ranked responses given by a larger-width beam search. Enhanced by PPN, the decoder can promote the results with great potential during the beam search phase. The experimental results on both Chinese and English corpora show that our method is promising to increase the quality and diversity of generated responses, with inference efficiency well maintained.
2016
pdf
abs
Ranking Responses Oriented to Conversational Relevance in Chat-bots
Bowen Wu
|
Baoxun Wang
|
Hui Xue
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
For automatic chatting systems, it is indeed a great challenge to reply the given query considering the conversation history, rather than based on the query only. This paper proposes a deep neural network to address the context-aware response ranking problem by end-to-end learning, so as to help to select conversationally relevant candidate. By combining the multi-column convolutional layer and the recurrent layer, our model is able to model the semantics of the utterance sequence by grasping the semantic clue within the conversation, on the basis of the effective representation for each sentence. Especially, the network utilizes attention pooling to further emphasis the importance of essential words in conversations, thus the representations of contexts tend to be more meaningful and the performance of candidate ranking is notably improved. Meanwhile, due to the adoption of attention pooling, it is possible to visualize the semantic clues. The experimental results on the large amount of conversation data from social media have shown that our approach is promising for quantifying the conversational relevance of responses, and indicated its good potential for building practical IR based chat-bots.