Benjamin Paassen


2025

pdf bib
EdTec-ItemGen: Enhancing Retrieval-Augmented Item Generation Through Key Point Extraction
Alonso Palomino | David Buschhüter | Roland Roller | Niels Pinkwart | Benjamin Paassen
Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM)

A major bottleneck in exam construction involves designing test items (i.e., questions) that accurately reflect key content from domain-aligned curricular materials. For instance, during formative assessments in vocational education and training (VET), exam designers must generate updated test items that assess student learning progress while covering the full breadth of topics in the curriculum. Large language models (LLMs) can partially support this process, but effective use requires careful prompting and task-specific understanding. We propose a new key point extraction method for retrieval-augmented item generation that enhances the process of generating test items with LLMs. We exhaustively evaluated our method using a TREC-RAG approach, finding that prompting LLMs with key content rather than directly using full curricular text passages significantly improves item quality regarding key information coverage by 8%. To demonstrate these findings, we release EdTec-ItemGen, a retrieval-augmented item generation demo tool to support item generation in education.

pdf bib
Mitigating Bias in Item Retrieval for Enhancing Exam Assembly in Vocational Education Services
Alonso Palomino | Andreas Fischer | David Buschhüter | Roland Roller | Niels Pinkwart | Benjamin Paassen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

In education, high-quality exams must cover broad specifications across diverse difficulty levels during the assembly and calibration of test items to effectively measure examinees’ competence. However, balancing the trade-off of selecting relevant test items while fulfilling exam specifications without bias is challenging, particularly when manual item selection and exam assembly rely on a pre-validated item base. To address this limitation, we propose a new mixed-integer programming re-ranking approach to improve relevance, while mitigating bias on an industry-grade exam assembly platform. We evaluate our approach by comparing it against nine bias mitigation re-ranking methods in 225 experiments on a real-world benchmark data set from vocational education services. Experimental results demonstrate a 17% relevance improvement with a 9% bias reduction when integrating sequential optimization techniques with improved contextual relevance augmentation and scoring using a large language model. Our approach bridges information retrieval and exam assembly, enhancing the human-in-the-loop exam assembly process while promoting unbiased exam design

2024

pdf bib
Fine-Grained Detection of Solidarity for Women and Migrants in 155 Years of German Parliamentary Debates
Aida Kostikova | Dominik Beese | Benjamin Paassen | Ole Pütz | Gregor Wiedemann | Steffen Eger
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Solidarity is a crucial concept to understand social relations in societies. In this study, we investigate the frequency of (anti-)solidarity towards women and migrants in German parliamentary debates between 1867 and 2022. Using 2,864 manually annotated text snippets, we evaluate large language models (LLMs) like Llama 3, GPT-3.5, and GPT-4. We find that GPT-4 outperforms other models, approaching human annotation accuracy. Using GPT-4, we automatically annotate 18,300 further instances and find that solidarity with migrants outweighs anti-solidarity but that frequencies and solidarity types shift over time. Most importantly, group-based notions of (anti-)solidarity fade in favor of compassionate solidarity, focusing on the vulnerability of migrant groups, and exchange-based anti-solidarity, focusing on the lack of (economic) contribution. This study highlights the interplay of historical events, socio-economic needs, and political ideologies in shaping migration discourse and social cohesion.

pdf bib
EdTec-QBuilder: A Semantic Retrieval Tool for Assembling Vocational Training Exams in German Language
Alonso Palomino | Andreas Fischer | Jakub Kuzilek | Jarek Nitsch | Niels Pinkwart | Benjamin Paassen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

Selecting and assembling test items from a validated item database into comprehensive exam forms is an under-researched but significant challenge in education. Search and retrieval methods provide a robust framework to assist educators when filtering and assembling relevant test items. In this work, we present EdTec-QBuilder, a semantic search tool developed to assist vocational educators in assembling exam forms. To implement EdTec-QBuilder’s core search functionality, we evaluated eight retrieval strategies and twenty-five popular pre-trained sentence similarity models. Our evaluation revealed that employing cross-encoders to re-rank an initial list of relevant items is best for assisting vocational trainers in assembling examination forms. Beyond topic-based exam assembly, EdTec-QBuilder aims to provide a crowdsourcing infrastructure enabling manual exam assembly data collection, which is critical for future research and development in assisted and automatic exam assembly models.

2014

pdf bib
Ontology-based Extraction of Structured Information from Publications on Preclinical Experiments for Spinal Cord Injury Treatments
Benjamin Paassen | Andreas Stöckel | Raphael Dickfelder | Jan Philip Göpfert | Nicole Brazda | Tarek Kirchhoffer | Hans Werner Müller | Roman Klinger | Matthias Hartung | Philipp Cimiano
Proceedings of the Third Workshop on Semantic Web and Information Extraction