Ben Saunders


2024

pdf
Select and Reorder: A Novel Approach for Neural Sign Language Production
Harry Walsh | Ben Saunders | Richard Bowden
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sign languages, often categorised as low-resource languages, face significant challenges in achieving accurate translation due to the scarcity of parallel annotated datasets. This paper introduces Select and Reorder (S&R), a novel approach that addresses data scarcity by breaking down the translation process into two distinct steps: Gloss Selection (GS) and Gloss Reordering (GR). Our method leverages large spoken language models and the substantial lexical overlap between source spoken languages and target sign languages to establish an initial alignment. Both steps make use of Non-AutoRegressive (NAR) decoding for reduced computation and faster inference speeds. Through this disentanglement of tasks, we achieve state-of-the-art BLEU and Rouge scores on the Meine DGS Annotated (mDGS) dataset, demonstrating a substantial BLUE-1 improvement of 37.88% in Text to Gloss (T2G) Translation. This innovative approach paves the way for more effective translation models for sign languages, even in resource-constrained settings.

2022

pdf
Skeletal Graph Self-Attention: Embedding a Skeleton Inductive Bias into Sign Language Production
Ben Saunders | Necati Cihan Camgöz | Richard Bowden
Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology: The Junction of the Visual and the Textual: Challenges and Perspectives

Recent approaches to Sign Language Production (SLP) have adopted spoken language Neural Machine Translation (NMT) architectures, applied without sign-specific modifications. In addition, these works represent sign language as a sequence of skeleton pose vectors, projected to an abstract representation with no inherent skeletal structure. In this paper, we represent sign language sequences as a skeletal graph structure, with joints as nodes and both spatial and temporal connections as edges. To operate on this graphical structure, we propose Skeletal Graph Self-Attention (SGSA), a novel graphical attention layer that embeds a skeleton inductive bias into the SLP model. Retaining the skeletal feature representation throughout, we directly apply a spatio-temporal adjacency matrix into the self-attention formulation. This provides structure and context to each skeletal joint that is not possible when using a non-graphical abstract representation, enabling fluid and expressive sign language production. We evaluate our Skeletal Graph Self-Attention architecture on the challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, achieving state-of-the-art back translation performance with an 8% and 7% improvement over competing methods for the dev and test sets.

pdf
Changing the Representation: Examining Language Representation for Neural Sign Language Production
Harry Walsh | Ben Saunders | Richard Bowden
Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology: The Junction of the Visual and the Textual: Challenges and Perspectives

Neural Sign Language Production (SLP) aims to automatically translate from spoken language sentences to sign language videos. Historically the SLP task has been broken into two steps; Firstly, translating from a spoken language sentence to a gloss sequence and secondly, producing a sign language video given a sequence of glosses. In this paper we apply Natural Language Processing techniques to the first step of the SLP pipeline. We use language models such as BERT and Word2Vec to create better sentence level embeddings, and apply several tokenization techniques, demonstrating how these improve performance on the low resource translation task of Text to Gloss. We introduce Text to HamNoSys (T2H) translation, and show the advantages of using a phonetic representation for sign language translation rather than a sign level gloss representation. Furthermore, we use HamNoSys to extract the hand shape of a sign and use this as additional supervision during training, further increasing the performance on T2H. Assembling best practise, we achieve a BLEU-4 score of 26.99 on the MineDGS dataset and 25.09 on PHOENIX14T, two new state-of-the-art baselines.