Ansel Blume


2025

pdf bib
SYNTHIA: Novel Concept Design with Affordance Composition
Hyeonjeong Ha | Xiaomeng Jin | Jeonghwan Kim | Jiateng Liu | Zhenhailong Wang | Khanh Duy Nguyen | Ansel Blume | Nanyun Peng | Kai-Wei Chang | Heng Ji
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-to-image (T2I) models enable rapid concept design, making them widely used in AI-driven design. While recent studies focus on generating semantic and stylistic variations of given design concepts, –the integration of multiple affordances into a single coherent concept–remains largely overlooked. In this paper, we introduce SYNTHIA, a framework for generating novel, functionally coherent designs based on desired affordances. Our approach leverages a hierarchical concept ontology that decomposes concepts into parts and affordances, serving as a crucial building block for functionally coherent design. We also develop a curriculum learning scheme based on our ontology that contrastively fine-tunes T2I models to progressively learn affordance composition while maintaining visual novelty. To elaborate, we (i) gradually increase affordance distance, guiding models from basic concept-affordance association to complex affordance compositions that integrate parts of distinct affordances into a single, coherent form, and (ii) enforce visual novelty by employing contrastive objectives to push learned representations away from existing concepts. Experimental results show that SYNTHIA outperforms state-of-the-art T2I models, demonstrating absolute gains of 25.1% and 14.7% for novelty and functional coherence in human evaluation, respectively.

2023

pdf bib
Generative Models for Product Attribute Extraction
Ansel Blume | Nasser Zalmout | Heng Ji | Xian Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Product attribute extraction is an emerging field in information extraction and e-commerce, with applications including knowledge base construction, product recommendation, and enhancing customer experiences. In this work, we explore the use of generative models for product attribute extraction. We analyze their utility with hard and soft prompting methods, and demonstrate their ability to generate implicit attribute values, which state-of-the-art sequence tagging models are unable to extract. We perform a wide range of experiments on Amazon and MAVE product attribute datasets, and are the first to present results on multilingual attribute extraction. Our results show that generative models can outperform state- of-the-art tagging models for explicit product attribute extraction while having greater data efficiency, that they have the unique ability to perform implicit attribute extraction, and that in certain settings large language models can perform competitively with finetuned models with as little as two in-context examples.