Alireza Salemi


2025

pdf bib
Personalized Generation In Large Model Era: A Survey
Yiyan Xu | Jinghao Zhang | Alireza Salemi | Xinting Hu | Wenjie Wang | Fuli Feng | Hamed Zamani | Xiangnan He | Tat-Seng Chua
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the era of large models, content generation is gradually shifting to Personalized Generation (PGen), tailoring content to individual preferences and needs. This paper presents the first comprehensive survey on PGen, investigating existing research in this rapidly growing field. We conceptualize PGen from a unified perspective, systematically formalizing its key components, core objectives, and abstract workflows. Based on this unified perspective, we propose a multi-level taxonomy, offering an in-depth review of technical advancements, commonly used datasets, and evaluation metrics across multiple modalities, personalized contexts, and tasks. Moreover, we envision the potential applications of PGen and highlight open challenges and promising directions for future exploration. By bridging PGen research across multiple modalities, this survey serves as a valuable resource for fostering knowledge sharing and interdisciplinary collaboration, ultimately contributing to a more personalized digital landscape.

pdf bib
Beyond Factual Accuracy: Evaluating Coverage of Diverse Factual Information in Long-form Text Generation
Chris Samarinas | Alexander Krubner | Alireza Salemi | Youngwoo Kim | Hamed Zamani
Findings of the Association for Computational Linguistics: ACL 2025

This paper presents ICAT, an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs.

pdf bib
ExPerT: Effective and Explainable Evaluation of Personalized Long-Form Text Generation
Alireza Salemi | Julian Killingback | Hamed Zamani
Findings of the Association for Computational Linguistics: ACL 2025

Evaluating personalized text generated by large language models (LLMs) is challenging, as only the LLM user, i.e. prompt author, can reliably assess the output, but re-engaging the same individuals across studies is infeasible. This paper addresses the challenge of evaluating personalized text generation by introducing ExPerT, an explainable reference-based evaluation framework. ExPerT leverages an LLM to extract atomic aspects and their evidences from the generated and reference texts, match the aspects, and evaluate their alignment based on content and writing style—two key attributes in personalized text generation. Additionally, ExPerT generates detailed, fine-grained explanations for every step of the evaluation process, enhancing transparency and interpretability. Our experiments demonstrate that ExPerT achieves a 7.2% relative improvement in alignment with human judgments compared to the state-of-the-art text generation evaluation methods. Furthermore, human evaluators rated the usability of ExPerT’s explanations at 4.7 out of 5, highlighting its effectiveness in making evaluation decisions more interpretable.

2024

pdf bib
LaMP: When Large Language Models Meet Personalization
Alireza Salemi | Sheshera Mysore | Michael Bendersky | Hamed Zamani
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper highlights the importance of personalization in large language models and introduces the LaMP benchmark — a novel benchmark for training and evaluating language models for producing personalized outputs. LaMP offers a comprehensive evaluation framework with diverse language tasks and multiple entries for each user profile. It consists of seven personalized tasks, spanning three text classification and four text generation tasks. We additionally propose two retrieval augmentation approaches that retrieve personal items from each user profile for personalizing language model outputs. To this aim, we study various retrieval models, including term matching, semantic matching, and time-aware methods. Extensive experiments on LaMP for zero-shot and fine-tuned language models demonstrate the efficacy of the proposed retrieval augmentation approach and highlight the impact of personalization in various natural language tasks.

2023

pdf bib
PEACH: Pre-Training Sequence-to-Sequence Multilingual Models for Translation with Semi-Supervised Pseudo-Parallel Document Generation
Alireza Salemi | Amirhossein Abaskohi | Sara Tavakoli | Azadeh Shakery | Yadollah Yaghoobzadeh
Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)

Multilingual pre-training significantly improves many multilingual NLP tasks, including machine translation. Most existing methods are based on some variants of masked language modeling and text-denoising objectives on monolingual data. Multilingual pre-training on monolingual data ignores the availability of parallel data in many language pairs. Also, some other works integrate the available human-generated parallel translation data in their pre-training. This kind of parallel data is definitely helpful, but it is limited even in high-resource language pairs. This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training. First, a denoising model is pre-trained on monolingual data to reorder, add, remove, and substitute words, enhancing the pre-training documents’ quality. Then, we generate different pseudo-translations for each pre-training document using dictionaries for word-by-word translation and applying the pre-trained denoising model. The resulting pseudo-parallel data is then used to pre-train our multilingual sequence-to-sequence model, PEACH. Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks, including supervised, zero- and few-shot scenarios. Moreover, PEACH’s ability to transfer knowledge between similar languages makes it particularly useful for low-resource languages. Our results demonstrate that with high-quality dictionaries for generating accurate pseudo-parallel, PEACH can be valuable for low-resource languages.

2021

pdf bib
ARMAN: Pre-training with Semantically Selecting and Reordering of Sentences for Persian Abstractive Summarization
Alireza Salemi | Emad Kebriaei | Ghazal Neisi Minaei | Azadeh Shakery
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Abstractive text summarization is one of the areas influenced by the emergence of pre-trained language models. Current pre-training works in abstractive summarization give more points to the summaries with more words in common with the main text and pay less attention to the semantic similarity between generated sentences and the original document. We propose ARMAN, a Transformer-based encoder-decoder model pre-trained with three novel objectives to address this issue. In ARMAN, salient sentences from a document are selected according to a modified semantic score to be masked and form a pseudo summary. To summarize more accurately and similar to human writing patterns, we applied modified sentence reordering. We evaluated our proposed models on six downstream Persian summarization tasks. Experimental results show that our proposed model achieves state-of-the-art performance on all six summarization tasks measured by ROUGE and BERTScore. Our models also outperform prior works in textual entailment, question paraphrasing, and multiple choice question answering. Finally, we established a human evaluation and show that using the semantic score significantly improves summarization results.

pdf bib
UTNLP at SemEval-2021 Task 5: A Comparative Analysis of Toxic Span Detection using Attention-based, Named Entity Recognition, and Ensemble Models
Alireza Salemi | Nazanin Sabri | Emad Kebriaei | Behnam Bahrak | Azadeh Shakery
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Detecting which parts of a sentence contribute to that sentence’s toxicity—rather than providing a sentence-level verdict of hatefulness— would increase the interpretability of models and allow human moderators to better understand the outputs of the system. This paper presents our team’s, UTNLP, methodology and results in the SemEval-2021 shared task 5 on toxic spans detection. We test multiple models and contextual embeddings and report the best setting out of all. The experiments start with keyword-based models and are followed by attention-based, named entity- based, transformers-based, and ensemble models. Our best approach, an ensemble model, achieves an F1 of 0.684 in the competition’s evaluation phase.