Large language models (LLMs) often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information. We call this approach general knowledge subtraction or GenKnowSub. Leveraging the refined task-specific modules and the Arrow routing algorithm, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 reveal how GenKnowSub generalizes to a weaker LLM.
This paper explores the efficacy of large language models (LLMs) for Persian. While ChatGPT and consequent LLMs have shown remarkable performance in English, their efficiency for more low-resource languages remains an open question. We present the first comprehensive benchmarking study of LLMs across diverse Persian language tasks. Our primary focus is on GPT-3.5-turbo, but we also include GPT-4 and OpenChat-3.5 to provide a more holistic evaluation. Our assessment encompasses a diverse set of tasks categorized into classic, reasoning, and knowledge-based domains. To enable a thorough comparison, we evaluate LLMs against existing task-specific fine-tuned models. Given the limited availability of Persian datasets for reasoning tasks, we introduce two new benchmarks: one based on elementary school math questions and another derived from the entrance exams for 7th and 10th grades. Our findings reveal that while LLMs, especially GPT-4, excel in tasks requiring reasoning abilities and a broad understanding of general knowledge, they often lag behind smaller pretrained models fine-tuned specifically for particular tasks. Additionally, we observe improved performance when test sets are translated to English before inputting them into GPT-3.5. These results highlight the significant potential for enhancing LLM performance in the Persian language. This is particularly noteworthy due to the unique attributes of Persian, including its distinct alphabet and writing styles. We have made our codes, prompts, and data available here: https://github.com/Ipouyall/Benchmarking_ChatGPT_for_Persian.
This paper presents the AliEdalat team’s methodology and results in SemEval-2022 Task 4: Patronizing and Condescending Language (PCL) Detection. This task aims to detect the presence of PCL and PCL categories in text in order to prevent further discrimination against vulnerable communities. We use an ensemble of three basic models to detect the presence of PCL: fine-tuned bigbird, fine-tuned mpnet, and BERT+BiGRU. The ensemble model performs worse than the baseline due to overfitting and achieves an F1-score of 0.3031. We offer another solution to resolve the submitted model’s problem. We consider the different categories of PCL separately. To detect each category of PCL, we act like a PCL detector. Instead of BERT+BiGRU, we use fine-tuned roberta in the models. In PCL category detection, our model outperforms the baseline model and achieves an F1-score of 0.2531. We also present new models for detecting two categories of PCL that outperform the submitted models.