Aimin Zhou


2025

pdf bib
Mis-prompt: Benchmarking Large Language Models for Proactive Error Handling
Jiayi Zeng | Yizhe Feng | Mengliang He | Wenhui Lei | Wei Zhang | Zeming Liu | Xiaoming Shi | Aimin Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated significant advancements in error handling. Current error-handling works are performed in a passive manner, with explicit error-handling instructions. However, in real-world scenarios, explicit error-handling instructions are usually unavailable. In this paper, our work identifies this challenge as how to conduct proactive error handling without explicit error handling instructions. To promote further research, this work introduces a new benchmark, termed Mis-prompt, consisting of four evaluation tasks, an error category taxonomy, and a new evaluation dataset. Furthermore, this work analyzes current LLMs’ performance on the benchmark, and the experimental results reveal that current LLMs show poor performance on proactive error handling, and SFT on error handling instances improves LLMs’ proactive error handling capabilities. The dataset will be publicly available.

pdf bib
The Role of Visual Modality in Multimodal Mathematical Reasoning: Challenges and Insights
Yufang Liu | Yao Du | Tao Ji | Jianing Wang | Yang Liu | Yuanbin Wu | Aimin Zhou | Mengdi Zhang | Xunliang Cai
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent research has increasingly focused on multimodal mathematical reasoning, particularly emphasizing the creation of relevant datasets and benchmarks. Despite this, the role of visual information in reasoning has been underexplored. Our findings show that existing multimodal mathematical models minimally leverage visual information, and model performance remains largely unaffected by changes to or removal of images in the dataset. We attribute this to the dominance of textual information and answer options that inadvertently guide the model to correct answers. To improve evaluation methods, we introduce the HC-M3D dataset, specifically designed to require image reliance for problem-solving and to challenge models with similar, yet distinct, images that change the correct answer. In testing leading models, their failure to detect these subtle visual differences suggests limitations in current visual perception capabilities. Additionally, we observe that the common approach of improving general VQA capabilities by combining various types of image encoders does not contribute to math reasoning performance. This finding also presents a challenge to enhancing visual reliance during math reasoning.

pdf bib
FinDABench: Benchmarking Financial Data Analysis Ability of Large Language Models
Shu Liu | Shangqing Zhao | Chenghao Jia | Xinlin Zhuang | Zhaoguang Long | Jie Zhou | Aimin Zhou | Man Lan | Yang Chong
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks. However, their proficiency and reliability in the specialized domain of financial data analysis, particularly focusing on data-driven thinking, remain uncertain. To bridge this gap, we introduce FinDABench, a comprehensive benchmark designed to evaluate the financial data analysis capabilities of LLMs within this context. The benchmark comprises 15,200 training instances and 8,900 test instances, all meticulously crafted by human experts. FinDABench assesses LLMs across three dimensions: 1) Core Ability, evaluating the models’ ability to perform financial indicator calculation and corporate sentiment risk assessment; 2) Analytical Ability, determining the models’ ability to quickly comprehend textual information and analyze abnormal financial reports; and 3) Technical Ability, examining the models’ use of technical knowledge to address real-world data analysis challenges involving analysis generation and charts visualization from multiple perspectives. We will release FinDABench, and the evaluation scripts at https://github.com/xxx. FinDABench aims to provide a measure for in-depth analysis of LLM abilities and foster the advancement of LLMs in the field of financial data analysis.

pdf bib
Flow2Code: Evaluating Large Language Models for Flowchart-based Code Generation Capability
Mengliang He | Jiayi Zeng | Yankai Jiang | Wei Zhang | Zeming Liu | Xiaoming Shi | Aimin Zhou
Findings of the Association for Computational Linguistics: ACL 2025

While large language models (LLMs) show promise in code generation, existing benchmarks neglect the flowchart-based code generation. To promote further research on flowchart-based code generation, this work presents Flow2Code, a novel benchmark for flowchart-based code generation evaluation. The evaluation dataset spans 15 programming languages and includes 5,622 code segments paired with 16,866 flowcharts of three types: code, UML, and pseudocode. Extensive experiments with 13 multimodal LLMs reveal that current LLMs can not generate code based on flowcharts perfectly. Besides, experiment results show that the supervised fine-tuning technique contributes greatly to the models’ performance. The dataset will be publicly available.

2024

pdf bib
Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models
Yufang Liu | Tao Ji | Changzhi Sun | Yuanbin Wu | Aimin Zhou
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Vision-Language Models (LVLMs) have achieved impressive performance, yet research has pointed out a serious issue with object hallucinations within these models. However, there is no clear conclusion as to which part of the model these hallucinations originate from. In this paper, we present an in-depth investigation into the object hallucination problem specifically within the CLIP model, which serves as the backbone for many state-of-the-art vision-language systems. We unveil that even in isolation, the CLIP model is prone to object hallucinations, suggesting that the hallucination problem is not solely due to the interaction between vision and language modalities. To address this, we propose a counterfactual data augmentation method by creating negative samples with a variety of hallucination issues. We demonstrate that our method can effectively mitigate object hallucinations for CLIP model, and we show the the enhanced model can be employed as a visual encoder, effectively alleviating the object hallucination issue in LVLMs.

pdf bib
Are U a Joke Master? Pun Generation via Multi-Stage Curriculum Learning towards a Humor LLM
Yang Chen | Chong Yang | Tu Hu | Xinhao Chen | Man Lan | Li Cai | Xinlin Zhuang | Xuan Lin | Xin Lu | Aimin Zhou
Findings of the Association for Computational Linguistics: ACL 2024

Although large language models (LLMs) acquire extensive world knowledge and some reasoning abilities, their proficiency in generating humorous sentences remains a challenge. Previous research has demonstrated that the humor generation capabilities of ChatGPT are confined to producing merely 25 unique jokes. In this work, we concentrate on endowing LLMs with the ability of generating puns, a particular category of humor by preference learning method. We propose a multi-stage curriculum preference learning framework to optimize both pun structure preferences and humor preferences. Specifically, we improve the Direct Preference Optimization (DPO) algorithm to address the challenge of multi-objective alignment problem. Besides, to facilitate further advancement in this field, we collect a Chinese Pun (ChinesePun) dataset, containing 2.1k puns and corresponding annotations. Experimental results on both Chinese and English benchmark datasets demonstrate that our method significantly outperforms all the baseline models.

2023

pdf bib
Overview of CCL23-Eval Task 8: Chinese Essay Fluency Evaluation (CEFE) Task
Xinshu Shen | Hongyi Wu | Xiaopeng Bai | Yuanbin Wu | Aimin Zhou | Shaoguang Mao | Tao Ge | Yan Xia
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“This paper provides a comprehensive review of the CCL23-Eval Task 8, i.e., Chinese EssayFluency Evaluation (CEFE). The primary aim of this task is to systematically identify the typesof grammatical fine-grained errors that affect the readability and coherence of essays writtenby Chinese primary and secondary school students, and then to suggest suitable corrections toenhance the fluidity of their written expression. This task consists of three distinct tracks: (1)Coarse-grained and fine-grained error identification; (2) Character-level error identification andcorrection; (3) Error sentence rewriting. In the end, we received 44 completed registration forms,leading to a total of 130 submissions from 11 dedicated participating teams. We present theresults of all participants and our analysis of these results. Both the dataset and evaluation toolused in this task are available1.”