Abdulrahman S. Al-Batati


2025

pdf bib
Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs
Fakhraddin Alwajih | Abdellah El Mekki | Samar Mohamed Magdy | AbdelRahim A. Elmadany | Omer Nacar | El Moatez Billah Nagoudi | Reem Abdel-Salam | Hanin Atwany | Youssef Nafea | Abdulfattah Mohammed Yahya | Rahaf Alhamouri | Hamzah A. Alsayadi | Hiba Zayed | Sara Shatnawi | Serry Sibaee | Yasir Ech-chammakhy | Walid Al-Dhabyani | Marwa Mohamed Ali | Imen Jarraya | Ahmed Oumar El-Shangiti | Aisha Alraeesi | Mohammed Anwar AL-Ghrawi | Abdulrahman S. Al-Batati | Elgizouli Mohamed | Noha Taha Elgindi | Muhammed Saeed | Houdaifa Atou | Issam Ait Yahia | Abdelhak Bouayad | Mohammed Machrouh | Amal Makouar | Dania Alkawi | Mukhtar Mohamed | Safaa Taher Abdelfadil | Amine Ziad Ounnoughene | Anfel Rouabhia | Rwaa Assi | Ahmed Sorkatti | Mohamedou Cheikh Tourad | Anis Koubaa | Ismail Berrada | Mustafa Jarrar | Shady Shehata | Muhammad Abdul-Mageed
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce PALM, a year-long community-driven project covering all 22 Arab countries. The dataset contains instruction–response pairs in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world—each an author of this paper—PALM offers a broad, inclusive perspective. We use PALM to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations: while closed-source LLMs generally perform strongly, they still exhibit flaws, and smaller open-source models face greater challenges. Furthermore, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data are publicly available for reproducibility. More information about PALM is available on our project page: https://github.com/UBC-NLP/palm.

pdf bib
Towards Inclusive Arabic LLMs: A Culturally Aligned Benchmark in Arabic Large Language Model Evaluation
Omer Nacar | Serry Taiseer Sibaee | Samar Ahmed | Safa Ben Atitallah | Adel Ammar | Yasser Alhabashi | Abdulrahman S. Al-Batati | Arwa Alsehibani | Nour Qandos | Omar Elshehy | Mohamed Abdelkader | Anis Koubaa
Proceedings of the First Workshop on Language Models for Low-Resource Languages

Arabic Large Language Models are usually evaluated using Western-centric benchmarks that overlook essential cultural contexts, making them less effective and culturally misaligned for Arabic-speaking communities. This study addresses this gap by evaluating the Arabic Massive Multitask Language Understanding (MMLU) Benchmark to assess its cultural alignment and relevance for Arabic Large Language Models (LLMs) across culturally sensitive topics. A team of eleven experts annotated over 2,500 questions, evaluating them based on fluency, adequacy, cultural appropriateness, bias detection, religious sensitivity, and adherence to social norms. Through human assessment, the study highlights significant cultural misalignments and biases, particularly in sensitive areas like religion and morality. In response to these findings, we propose annotation guidelines and integrate culturally enriched data sources to enhance the benchmark’s reliability and relevance. The research highlights the importance of cultural sensitivity in evaluating inclusive Arabic LLMs, fostering more widely accepted LLMs for Arabic-speaking communities.