Abderrahmane Issam


2025

pdf bib
A Representation Level Analysis of NMT Model Robustness to Grammatical Errors
Abderrahmane Issam | Yusuf Can Semerci | Jan Scholtes | Gerasimos Spanakis
Findings of the Association for Computational Linguistics: ACL 2025

Understanding robustness is essential for building reliable NLP systems. Unfortunately, in the context of machine translation, previous work mainly focused on documenting robustness failures or improving robustness. In contrast, we study robustness from a model representation perspective by looking at internal model representations of ungrammatical inputs and how they evolve through model layers. For this purpose, we perform Grammatical Error Detection (GED) probing and representational similarity analysis. Our findings indicate that the encoder first detects the grammatical error, then corrects it by moving its representation toward the correct form. To understand what contributes to this process, we turn to the attention mechanism where we identify what we term *Robustness Heads*. We find that *Robustness Heads* attend to interpretable linguistic units when responding to grammatical errors, and that when we fine-tune models for robustness, they tend to rely more on *Robustness Heads* for updating the ungrammatical word representation.

2024

pdf bib
Fixed and Adaptive Simultaneous Machine Translation Strategies Using Adapters
Abderrahmane Issam | Yusuf Can Semerci | Jan Scholtes | Gerasimos Spanakis
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Simultaneous machine translation aims at solving the task of real-time translation by starting to translate before consuming the full input, which poses challenges in terms of balancing quality and latency of the translation. The wait-k policy offers a solution by starting to translate after consuming words, where the choice of the number k directly affects the latency and quality. In applications where we seek to keep the choice over latency and quality at inference, the wait-k policy obliges us to train more than one model. In this paper, we address the challenge of building one model that can fulfil multiple latency levels and we achieve this by introducing lightweight adapter modules into the decoder. The adapters are trained to be specialized for different wait-k values and compared to other techniques they offer more flexibility to allow for reaping the benefits of parameter sharing and minimizing interference. Additionally, we show that by combining with an adaptive strategy, we can further improve the results. Experiments on two language directions show that our method outperforms or competes with other strong baselines on most latency values.

2022

pdf bib
The Shared Task on Gender Rewriting
Bashar Alhafni | Nizar Habash | Houda Bouamor | Ossama Obeid | Sultan Alrowili | Daliyah AlZeer | Kawla Mohmad Shnqiti | Ahmed Elbakry | Muhammad ElNokrashy | Mohamed Gabr | Abderrahmane Issam | Abdelrahim Qaddoumi | Vijay Shanker | Mahmoud Zyate
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.