Ayesha Gulley


2025

pdf bib
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra | Zekun Wu | Ayesha Gulley | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Philip Colin Treleaven
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Large Language Models (LLMs) face limitations in AI legal and policy applications due to outdated knowledge, hallucinations, and poor reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems address these issues by incorporating external knowledge, but suffer from retrieval errors, ineffective context integration, and high operational costs. This paper presents the Hybrid Parameter-Adaptive RAG (HyPA-RAG) system, designed for the AI legal domain, with NYC Local Law 144 (LL144) as the test case. HyPA-RAG integrates a query complexity classifier for adaptive parameter tuning, a hybrid retrieval approach combining dense, sparse, and knowledge graph methods, and a comprehensive evaluation framework with tailored question types and metrics. Testing on LL144 demonstrates that HyPA-RAG enhances retrieval accuracy, response fidelity, and contextual precision, offering a robust and adaptable solution for high-stakes legal and policy applications.

2024

pdf bib
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra | Zekun Wu | Ayesha Gulley | Airlie Hilliard | Xin Guan | Adriano Koshiyama | Philip Colin Treleaven
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

While Large Language Models (LLMs) excel in text generation and question-answering, their effectiveness in AI legal and policy applications is limited by outdated knowledge, hallucinations, and inadequate reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems improve response accuracy by integrating external knowledge but struggle with retrieval errors, poor context integration, and high costs, particularly in interpreting AI legal texts. This paper introduces a Hybrid Parameter-Adaptive RAG (HyPA-RAG) system tailored for AI legal and policy, exemplified by NYC Local Law 144 (LL144). HyPA-RAG uses a query complexity classifier for adaptive parameter tuning, a hybrid retrieval strategy combining dense, sparse, and knowledge graph methods, and an evaluation framework with specific question types and metrics. By dynamically adjusting parameters, HyPA-RAG significantly improves retrieval accuracy and response fidelity. Testing on LL144 shows enhanced correctness, faithfulness, and contextual precision, addressing the need for adaptable NLP systems in complex, high-stakes AI legal and policy applications.