Ashish Kumar


2025

pdf bib
Semantic alignment in hyperbolic space for fine-grained emotion classification
Ashish Kumar | Durga Toshniwal
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Existing approaches to fine-grained emotion classification (FEC) often operate in Euclidean space, where the flat geometry limits the ability to distinguish semantically similar emotion labels (e.g., *annoyed* vs. *angry*). While prior research has explored hyperbolic geometry to capture fine-grained label distinctions, it typically relies on predefined hierarchies and ignores semantically similar negative labels that can mislead the model into making incorrect predictions. In this work, we propose HyCoEM (Hyperbolic Contrastive Learning for Emotion Classification), a semantic alignment framework that leverages the Lorentz model of hyperbolic space. Our approach embeds text and label representations into hyperbolic space via the exponential map, and employs a contrastive loss to bring text embeddings closer to their true labels while pushing them away from adaptively selected, semantically similar negatives. This enables the model to learn label embeddings without relying on a predefined hierarchy and better captures subtle distinctions by incorporating information from both positive and challenging negative labels. Experimental results on two benchmark FEC datasets demonstrate the effectiveness of our approach over baseline methods.

pdf bib
HyILR: Hyperbolic Instance-Specific Local Relationships for Hierarchical Text Classification
Ashish Kumar | Durga Toshniwal
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Recent approaches to Hierarchical Text Classification (HTC) rely on capturing the global label hierarchy, which contains static and often redundant relationships. Instead, the hierarchical relationships within the instance-specific set of positive labels are more important, as they focus on the relevant parts of the hierarchy. These localized relationships can be modeled as a semantic alignment between the text and its positive labels within the embedding space. However, without explicitly encoding the global hierarchy, achieving this alignment directly in Euclidean space is challenging, as its flat geometry does not naturally support hierarchicalrelationships. To address this, we propose Hyperbolic Instance-Specific Local Relationships (HyILR), which models instance-specific relationships using the Lorentz model of hyperbolic space. Text and label features are projected into hyperbolic space, where a contrastive loss aligns text with its labels. This loss is guided by a hierarchy-aware negative sampling strategy, ensuring the selection of structurally and semantically relevant negatives. By leveraging hyperbolic geometry for this alignment, our approach inherently captures hierarchical relationships and eliminates the need for global hierarchy encoding. Experimental results on four benchmark datasets validate the superior performance of HyILR over baseline methods.