2025
pdf
bib
abs
Retrieve to Explain: Evidence-driven Predictions for Explainable Drug Target Identification
Ravi Patel
|
Angus Brayne
|
Rogier Hintzen
|
Daniel Jaroslawicz
|
Georgiana Neculae
|
Dane S. Corneil
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Language models hold incredible promise for enabling scientific discovery by synthesizing massive research corpora. Many complex scientific research questions have multiple plausible answers, each supported by evidence of varying strength. However, existing language models lack the capability to quantitatively and faithfully compare answer plausibility in terms of supporting evidence. To address this, we introduce Retrieve to Explain (R2E), a retrieval-based model that scores and ranks all possible answers to a research question based on evidence retrieved from a document corpus. The architecture represents each answer only in terms of its supporting evidence, with the answer itself masked. This allows us to extend feature attribution methods such as Shapley values, to transparently attribute answer scores to supporting evidence at inference time. The architecture also allows incorporation of new evidence without retraining, including non-textual data modalities templated into natural language. We developed R2E for the challenging scientific discovery task of drug target identification, a human-in-the-loop process where failures are extremely costly and explainability paramount. When predicting whether drug targets will subsequently be confirmed as efficacious in clinical trials, R2E not only matches non-explainable literature-based models but also surpasses a genetics-based target identification approach used throughout the pharmaceutical industry.
2022
pdf
bib
abs
On Masked Language Models for Contextual Link Prediction
Angus Brayne
|
Maciej Wiatrak
|
Dane Corneil
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures
In the real world, many relational facts require context; for instance, a politician holds a given elected position only for a particular timespan. This context (the timespan) is typically ignored in knowledge graph link prediction tasks, or is leveraged by models designed specifically to make use of it (i.e. n-ary link prediction models). Here, we show that the task of n-ary link prediction is easily performed using language models, applied with a basic method for constructing cloze-style query sentences. We introduce a pre-training methodology based around an auxiliary entity-linked corpus that outperforms other popular pre-trained models like BERT, even with a smaller model. This methodology also enables n-ary link prediction without access to any n-ary training set, which can be invaluable in circumstances where expensive and time-consuming curation of n-ary knowledge graphs is not feasible. We achieve state-of-the-art performance on the primary n-ary link prediction dataset WD50K and on WikiPeople facts that include literals - typically ignored by knowledge graph embedding methods.
pdf
bib
abs
Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval
Maciej Wiatrak
|
Eirini Arvaniti
|
Angus Brayne
|
Jonas Vetterle
|
Aaron Sim
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)
A recent advancement in the domain of biomedical Entity Linking is the development of powerful two-stage algorithms – an initial candidate retrieval stage that generates a shortlist of entities for each mention, followed by a candidate ranking stage. However, the effectiveness of both stages are inextricably dependent on computationally expensive components. Specifically, in candidate retrieval via dense representation retrieval it is important to have hard negative samples, which require repeated forward passes and nearest neighbour searches across the entire entity label set throughout training. In this work, we show that pairing a proxy-based metric learning loss with an adversarial regularizer provides an efficient alternative to hard negative sampling in the candidate retrieval stage. In particular, we show competitive performance on the recall@1 metric, thereby providing the option to leave out the expensive candidate ranking step. Finally, we demonstrate how the model can be used in a zero-shot setting to discover out of knowledge base biomedical entities.