2025
pdf
bib
abs
LegalCore: A Dataset for Event Coreference Resolution in Legal Documents
Kangda Wei
|
Xi Shi
|
Jonathan Tong
|
Sai Ramana Reddy
|
Anandhavelu Natarajan
|
Rajiv Jain
|
Aparna Garimella
|
Ruihong Huang
Findings of the Association for Computational Linguistics: ACL 2025
Recognizing events and their coreferential mentions in a document is essential for understanding semantic meanings of text. The existing research on event coreference resolution is mostly limited to news articles. In this paper, we present the first dataset for the legal domain, LegalCore, which has been annotated with comprehensive event and event coreference information. The legal contract documents we annotated in this dataset are several times longer than news articles, with an average length of around 25k tokens per document. The annotations show that legal documents have dense event mentions and feature both short-distance and super long-distance coreference links between event mentions. We further benchmark mainstream Large Language Models (LLMs) on this dataset for both event detection and event coreference resolution tasks, and find that this dataset poses significant challenges for state-of-the-art open-source and proprietary LLMs, which perform significantly worse than a supervised baseline. We will publish the dataset as well as the code.
2024
pdf
bib
abs
Presentations by the Humans and For the Humans: Harnessing LLMs for Generating Persona-Aware Slides from Documents
Ishani Mondal
|
Shwetha S
|
Anandhavelu Natarajan
|
Aparna Garimella
|
Sambaran Bandyopadhyay
|
Jordan Boyd-Graber
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Scientific papers and slides are two different representations of the same underlying information, but both require substantial work to prepare. While there had been prior efforts on automating document-to-slides generation, there is still a pressing need of customizing the presentation of content aligning with the persona of target audience or duration of presentation. This paper first introduces the concept of end-user specification-aware document to slides conversion that incorporates end-user specifications into the conversion process. For this, we initially introduce a new dataset reuse the existing SciDuet dataset consisting of pairs of papers and corresponding slides decks from recent years’ *ACL conferences to create four persona-aware configurations. Secondly, we present Persona-Aware-D2S, a novel approach by finetuning LLMs using target audience feedback to create persona-aware slides from scientific documents. Our evaluation on both automated metrics and qualitative human evaluation suggests that by incorporating end-user specifications into the conversion process, our model can create presentations that are not only informative but also tailored to expectations and cognitive abilities of target audience.
pdf
bib
abs
SciDoc2Diagrammer-MAF: Towards Generation of Scientific Diagrams from Documents guided by Multi-Aspect Feedback Refinement
Ishani Mondal
|
Zongxia Li
|
Yufang Hou
|
Anandhavelu Natarajan
|
Aparna Garimella
|
Jordan Lee Boyd-Graber
Findings of the Association for Computational Linguistics: EMNLP 2024
Automating the creation of scientific diagrams from academic papers can significantly streamline the development of tutorials, presentations, and posters, thereby saving time and accelerating the process. Current text-to-image models (Rombach et al., 2022a; Belouadi et al., 2023) struggle with generating accurate and visually appealing diagrams from long-context inputs. We propose SciDoc2Diagram, a task that extracts relevant information from scientific papers and generates diagrams, along with a benchmarking dataset, SciDoc2DiagramBench. We develop a multi-step pipeline SciDoc2Diagrammer that generates diagrams based on user intentions using intermediate code generation. We observed that initial diagram drafts were often incomplete or unfaithful to the source, leading us to develop SciDoc2Diagrammer-Multi-Aspect-Feedback (MAF), a refinement strategy that significantly enhances factual correctness and visual appeal and outperforms existing models on both automatic and human judgement.
pdf
bib
abs
Presentations are not always linear! GNN meets LLM for Text Document-to-Presentation Transformation with Attribution
Himanshu Maheshwari
|
Sambaran Bandyopadhyay
|
Aparna Garimella
|
Anandhavelu Natarajan
Findings of the Association for Computational Linguistics: EMNLP 2024
Automatically generating a presentation from the text of a long document is a challenging and useful problem. In contrast to a flat summary, a presentation needs to have a better and non-linear narrative, i.e., the content of a slide can come from different and non-contiguous parts of the given document. However, it is difficult to incorporate such non-linear mapping of content to slides and ensure that the content is faithful to the document. LLMs are prone to hallucination and their performance degrades with the length of the input document. Towards this, we propose a novel graph based solution where we learn a graph from the input document and use a combination of graph neural network and LLM to generate a presentation with attribution of content for each slide. We conduct thorough experiments to show the merit of our approach compared to directly using LLMs for this task.
pdf
bib
abs
Enhancing Presentation Slide Generation by LLMs with a Multi-Staged End-to-End Approach
Sambaran Bandyopadhyay
|
Himanshu Maheshwari
|
Anandhavelu Natarajan
|
Apoorv Saxena
Proceedings of the 17th International Natural Language Generation Conference
Generating presentation slides from a long document with multimodal elements such as text and images is an important task. This is time consuming and needs domain expertise if done manually. Existing approaches for generating a rich presentation from a document are often semi-automatic or only put a flat summary into the slides ignoring the importance of a good narrative. In this paper, we address this research gap by proposing a multi-staged end-to-end model which uses a combination of LLM and VLM. We have experimentally shown that compared to applying LLMs directly with state-of-the-art prompting, our proposed multi-staged solution is better in terms of automated metrics and human evaluation.