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e Semantic decoding and belief tracking require different type of

labelled data

e Combining these two units, reduces the amount of labelled
data required and avoid possibility of information loss in the SD

stage.
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Belief Tracking

Turn 2:
System: There are nine guesthouse hotels in various areas. What part of town are you hoping for?
User: | just need it booked for 6 people for a total of 4 nights starting from sunday.

Labels: hotel: {internet=yes, type=guesthouse, parking=yes, pricerange=cheap
Book=day, Book=people, Book=stay}

Turn 3:

System: You're booked at the Alexander Bed and Breakfast, 517a coldham lane,

for 6 people for four nights starting Sunday.

User: Thank you! I'm also looking for a restaurant. Ideally an ltalian place in the same price range in the centre.

Labels: hotel: {internet=yes, type=qguesthouse, parking=yes pricerange=cheap
Book=day, Book=people, Book=stay}, restaurant: {area=centre, food=Italian,
pricerange=cheap}
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Limitations of Current Belief Trackers

1. The model parameters increase with the size of the ontology

2. Many approaches rely on the delexicalization except for Neural
Belief Tracker (NBT), Mrksic et al 2017

3. Current multi-domain models do not handle mixed domains
within a single dialogue

This causes a bottleneck in scaling the belief tracker to larger
domains and complex dialogues
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Problem Formulation

1. What is in the dialogue ontology?
2. What does the system output refer to?
3. What does the user input refer to?
4. How do we track the dialogue context?

5. How do we handle many domains?
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Belief State Update

o Use a statistical belief update mechanism modelled by a RNN

RNN with a memory cell over turns
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Datasets

o Wizard of Oz framework for collecting data for belief tracking

Amazon MTurk users given tasks to complete, access to the
database

They produce dialogues and annotate them
e Single-domain dataset WOZ 2.0 (Wen et al 2016)

New multi-domain dataset MultiwOZ



Datasets

_________|W0z20 | New Dataset

# of dialogues 1200 0855
# of domains 1 5
Avg. # of turns 7.45 14.30
# of slots 7 27

# of values 99 663



Results

1. Single-domain Dialogues:

WOZ 2.0 MultiWOZ (only restaurants)
Slot NBT-CNN | Bi-LSTM | CNN | NBT-CNN | Bi-LSTM | CNN
Food 88.9 96.1 96.4 78.3 84.7 85.3
Price range 93.7 98.0 97.9 92.6 95.6 93.6
Area 94.3 97.8 98.1 78.3 82.6 86.4
Joint goals 84.2 85.1 85.5 57.7 59.9 63.7




Results

1. Single-domain Dialogues:

WOZ 2.0 MultiWwOZ (only restaurants)
Slot NBT-CNN | Bi-LSTM | CNN | NBT-CNN | Bi-LSTM | CNN
Food 88.9 96.1 96.4 78.3 84.7 85.3
Price range 93.7 98.0 97.9 92.6 95.6 93.6
Area 94.3 97.8 98.1 78.3 82.6 86.4
Joint goals 84.2 85.1 85.5 37.7 39.9 63.7

2. Multi-Domain Dialogues:

MulttWOZ (multi-domain)

Model F1 score | Accuracy %
Uniform Sampling | 0.108 10.8
Bi-LSTM 0.876 93.7
CNN 0.878 93.2
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