

Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

Osman Ramadan, Paweł Budzianowski, Milica Gašić

Cambridge University, Engineering Department

{oior2, pfb30, mg460}@cam.ac.uk

Main Components of Spoken Dialogue Systems

Main Components of Spoken Dialogue Systems

 Semantic decoding and belief tracking require different type of labelled data

Main Components of Spoken Dialogue Systems

- Semantic decoding and belief tracking require different type of labelled data
- Combining these two units, reduces the amount of labelled data required and avoid possibility of information loss in the SD stage.

Belief Tracking

Belief Tracking

Turn 2:

System: There are nine guesthouse hotels in various areas. What part of town are you hoping for? **User:** I just need it booked for 6 people for a total of 4 nights starting from sunday.

Labels: hotel:{internet=yes, type=guesthouse, parking=yes, pricerange=cheap Book=day, Book=people, Book=stay}

Turn 3:

. . .

System: You're booked at the Alexander Bed and Breakfast, 517a coldham lane, for 6 people for four nights starting Sunday. **User:** Thank you! I'm also looking for a restaurant. Ideally an Italian place in the same price range in the centre.

```
Labels: hotel:{internet=yes, type=guesthouse, parking=yes pricerange=cheap
Book=day, Book=people, Book=stay}, restaurant: {area=centre, food=Italian,
pricerange=cheap}
```

1. The model parameters increase with the size of the ontology

- 1. The model parameters increase with the size of the ontology
- 2. Many approaches rely on the **delexicalization** except for Neural Belief Tracker (NBT), Mrkšić et al 2017

- 1. The model parameters increase with the size of the ontology
- 2. Many approaches rely on the **delexicalization** except for Neural Belief Tracker (NBT), Mrkšić et al 2017
- 3. Current multi-domain models do not handle **mixed domains** within a single dialogue

- 1. The model parameters increase with the size of the ontology
- 2. Many approaches rely on the **delexicalization** except for Neural Belief Tracker (NBT), Mrkšić et al 2017
- 3. Current multi-domain models do not handle **mixed domains** within a single dialogue

This causes a **bottleneck in scaling** the belief tracker to larger domains and complex dialogues

1. What is in the dialogue ontology?

- 1. What is in the dialogue ontology?
- 2. What does the system output refer to?

- 1. What is in the dialogue ontology?
- 2. What does the system output refer to?
- 3. What does the user input refer to?

- 1. What is in the dialogue ontology?
- 2. What does the system output refer to?
- 3. What does the user input refer to?
- 4. How do we track the dialogue context?

- 1. What is in the dialogue ontology?
- 2. What does the system output refer to?
- 3. What does the user input refer to?
- 4. How do we track the dialogue context?
- 5. How do we handle many domains?

3 Bidirectional LSTMs (domain, slot, value)

Belief State Update

• Use a statistical belief update mechanism modelled by a RNN

Belief State Update

• Use a statistical belief update mechanism modelled by a RNN

Belief State Update

• Use a statistical belief update mechanism modelled by a RNN

Datasets

- Wizard of Oz framework for collecting data for belief tracking
- Amazon MTurk users given tasks to complete, access to the database
- They produce dialogues and annotate them
- Single-domain dataset WOZ 2.0 (Wen et al 2016)
- New multi-domain dataset MultiWOZ

Datasets

	WOZ 2.0	New Dataset
# of dialogues	1200	9855
# of domains	1	5
Avg. # of turns	7.45	14.30
# of slots	7	27
# of values	99	663

Results

1. Single-domain Dialogues:

	WOZ 2.0		MultiWOZ (only restaurants)			
Slot	NBT-CNN	Bi-LSTM	CNN	NBT-CNN	Bi-LSTM	CNN
Food	88.9	96.1	96.4	78.3	84.7	85.3
Price range	93.7	98. 0	97.9	92.6	95.6	93.6
Area	94.3	97.8	98.1	78.3	82.6	86.4
Joint goals	84.2	85.1	85.5	57.7	59.9	63.7

Results

	WOZ 2.0		MultiWOZ (only restaurants)			
Slot	NBT-CNN	Bi-LSTM	CNN	NBT-CNN	Bi-LSTM	CNN
Food	88.9	96.1	96.4	78.3	84.7	85.3
Price range	93.7	98. 0	97.9	92.6	95.6	93.6
Area	94.3	97.8	98.1	78.3	82.6	86.4
Joint goals	84.2	85.1	85.5	57.7	59.9	63.7

1. Single-domain Dialogues:

2. Multi-Domain Dialogues:

MultiWOZ (multi-domain)				
Model	F1 score	Accuracy %		
Uniform Sampling	0.108	10.8		
Bi-LSTM	0.876	93.7		
CNN	0.878	93.2		

1. We proposed a model with **ontology-independent** parameters

- 1. We proposed a model with **ontology-independent** parameters
- 2. It also achieves **state-of-the-art** results in single-domain dialogues

- 1. We proposed a model with **ontology-independent** parameters
- 2. It also achieves **state-of-the-art** results in single-domain dialogues
- 3. The model demonstrates also **great capability** in handling mixed domains dialogues

- 1. We proposed a model with **ontology-independent** parameters
- 2. It also achieves **state-of-the-art** results in single-domain dialogues
- 3. The model demonstrates also **great capability** in handling mixed domains dialogues

Future work is to test the model on **out-of-domain** tracking (zero-shot learning)

- 1. We proposed a model with **ontology-independent** parameters
- 2. It also achieves **state-of-the-art** results in single-domain dialogues
- 3. The model demonstrates also **great capability** in handling mixed domains dialogues

Future work is to test the model on **out-of-domain** tracking (zero-shot learning)

The data collection was funded through Google Faculty Award