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A Mathematical Proof of Taylor
Exponent

Here we show that the Taylor exponent of an inde-
pendent and identically distributed (i.i.d.) process
is 0.5. A proof in a more general form is shown
in (Eisler, Bartos, and Kertész, 2007). This is a
known mathematical fact, as found previously in
(Yule, 1968).

Proposition 1. The Taylor exponent of a sequence
generated by an i.i.d. process is 0.5.

Proof. Consider i.i.d. random variables
X1,...,X;,..., XN, where 7 denotes the lo-
cation within a text. For a specific word wy, € W,
with W being the set of words, let p; denote
the probability of occurrence of word wy, i.e.,
P(X; = wg) = pi (for all 7). Naturally, the
expectation [E and variance V of the count of wy,
for X; are the following:
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Furthermore, note that E[(X; —py,) (X; —pi)] =0
for every 7, j with ¢ # j, because X; and X; are
independent of each other and (1) holds. There-
fore, Taylor exponent « of an i.i.d. process is 0.5,

because
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