
T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Constraining MGbank: Agreement, L-Selection and

Supertagging in Minimalist Grammars

John Torr
School of Informatics, University of Edinburgh

s1344326@sms.ed.ac.uk

Minimalist Grammars (MGs)

I MGs (Stabler 1997) are a computationally-oriented (MCFG
equivalent) formalisation of Chomsky’s (1995) Minimalist Program.

I Strongly lexicalised formalism with syntactic movement operations, in
which lexical categories consist of an ordered list of features which
must be checked and deleted as the derivation is constructed. E.g:

him :: d -case
helps :: d= +CASE v

him, helps, e : v

e, helps, e : +CASE v, him : -case

e, helps, e :: d= +CASE v e, him, e :: d -case

VP

DPi

him

V’

V

helps

DPi

t

Figure: An MG Derivation tree for the VP him, helps (left); and its corresponding
Xbar phrase structure tree (right). The object moves to check its case feature. The
verb-object ordering will subsequently be restored by V-to-v head movement.

I To derive the sentence he helps him we expand the lexicon:

he :: d -case
[trans] :: >v= =d lv
[pres] :: lv= +CASE t
[decl] :: t= c

e, [decl], he [pres] helps [trans] him : c

e, [decl], e :: t= c he, [pres], helps [trans] him : t

e, [pres], helps [trans] him : +CASE t, he : -case

e, [pres],e :: lv=+CASEt e, helps [trans], him : lv, he : -case

e, he, e :: d -case e, helps [trans], him : =d lv

e, [trans], e :: >v= =d lv him, helps, e : v

e, helps, e : +CASE v, him : -case

e, helps, e :: d= +CASE v e, him, e :: d -case
CP

C’

C

[decl]

TP

DPi

he

T’

T

[pres]

vP

DPi

t

v’

v

Vk

helps

v

[trans]

VP

DPj

him

V’

Vk

t

DPj

t

Figure: A derivation tree (top) and Xbar tree (bottom) for the sentence he helps him.

I MGs include the movement operations and phonetically null heads of
mainstream linguistic Minimalism, both of which can be
computationally costly unless carefully constrained (the worst case
complexity of MG chart parsing is n2k+3 (Fowlie and Koller 2017)).

I A non-statistical parser was used to generate MGbank, the first
wide-coverage corpus of MG trees, and we present two ways in
which its search space was constrained.

Selectional Restrictions 1: Case Agreement

I In the above grammar, he and and him have exactly the same
categories, so the grammar overgenerates him helps he.

I We could split -case into -nom/-acc, and +CASE into +NOM/+ACC.
I But this is not very elegant, as it increases k and in cases of

syncretism (it, this, that, you, [det] etc) blows up the lexicon.

...Case Agreement Continued

I Instead, we subcategorise the structure building features with selectional
properties (NOM, ACC, FIN, DECL, etc) and requirements (+NOM, +ACC,
-FIN, +DECL etc).

I +X indicates that the feature selected or licensed must bear property X, while
-X indicates that it must not bear this property.

I The following updated lexical entries will successfully block him helps he.

he :: d -case{NOM}
him :: d -case{ACC}
helps :: d= +CASE{+ACC} v
[pres] :: lv= +CASE{+NOM} t

Selectional Restrictions 2: Subcategorization and Subject-Verb

Agreement

I Selectional requirement features can also be used to constrain local
subcategorization, for example to block Jack wants that she help(s).

I However, cases of long-distance subcategorization also exist: Jack
demanded that she be there on time.

I Subject-Verb agreement is also non-local in Minimalist analyses, being
mediated by the null T head.

I To capture such phenomena, we introduce selectional variables, x, y, z etc,
which allow selectional properties and requirements to be percolated up the
tree. E.g.helps will bear a +3SG feature on its v selectee which will percolate
(via vP) up to the +CASE licensor of T where it will enforce the non-local
agreement.

e, [pres], helps [trans] him : +CASE{+NOM.PRES.TRANS.+3SG} t{FIN.PRES.TRANS.+3SG}, he : -case{NOM.3SG}

e, [pres], e :: lv{+PRES.x}= +CASE{+NOM.x} t{FIN.x} e, helps [trans], him : lv{PRES.TRANS.+3SG}, he : -case{NOM.3SG}

Figure: Merge of T with vP with percolation of selectional properties and requirements.

I Syncretism easily handled by allowing features to bear multiple properties
from the same paradigm, e.g. it :: d -case{NOM.ACC}

Supertagging with MGs

I Supertagging first introduced by Bangalore and Joshi (1999) for LTAG, but
has since proven most effective at making CCG parsing highly efficient.

I Applies Markovian part-of-speech tagging techniques to strongly lexicalised
formalisms, thereby reducing the parser’s search space.

I Although MGs are strongly lexicalised, they contain null heads, which is
problematic because existing supertaggers can only tag what they can see.

I We present an algorithm for extracting a set of complex LTAG-like categories
from a corpus of derivation trees, which anchors null heads to overt ones.

for each derivation tree t:
for each null head h in t:

if h is a proform:
linkWithGovernor (h);

else:
linkWithHeadOfComplement(h);

groupLinksIntoSupertags()

I The resulting supertags are composed of one overt category and zero or
more null categories. The following is the supertag for helps from the
derivation tree oppositie (subscripts indicate obligatory checking relations):
[decl] :: t=1 c
[pres] :: lv=2 +CASE t1

[trans] :: v=3 =d lv2

helps :: d= +CASE v3

rei ab rei-A’ ab-A’ ov ccg
|tags| 3087 2087 1883 1181 717 342
1-best 79.1 81.1 83.0 84.2 88.0 92.4
2-best 88.4 90.2 91.1 91.9 95.3 97.1
3-best 91.6 93.5 94.1 94.8 97.1 98.3

10-best 96.4 97.4 97.9 98.2 99.2 99.5
25-best 97.6 98.5 98.9 99.1 99.7 99.7
40-best 98.0 98.7 99.0 99.4 99.8 99.8

Table: Preliminary results of an LSTM MG supertagger, trained on 13,000 trees.

University of Edinburgh http://www.ilcc.inf.ed.ac.uk/

