

A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss

Chieh-Kai Lin National Tsing Hua University

Project page

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Outline

Motivation

- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

F People spend 12 hours everyday consuming media in 2018.

– eMarketer

https://www.emarketer.com/topics/topic/time-spent-with-media

World | U.S. Politics | Money | Entertainment | Tech | Sport | Travel | Style | Health | Video | VR CINN

Thai cave rescue begins

Extraction of 12 boys and their soccer coach could take days, officials say

Full story: 13 divers descend into caves to bring out soccer team

Heartbreaking letter: Youngest boy dreams of fried chicken

Photos: Thai soccer team trapped in cave

Hero: Former Thai navy SEAL diver dies in cave 🕟

Watch: A virtual look inside what cave rescue could look like (>)

Health: How a lack of oxygen is affecting the Thai soccer team

Pompeo dismisses North Korea's 'gangster' comments

US destroyers sail through

Taiwan Strait

Japan floods leave at least 55

dead; 2 million flee homes Croatia eliminate host Russia in Cup

England beat Sweden to reach first semis

International Edition + $\mathcal{P} \equiv$

US citizens warned to shelter amid Haiti

protests US soybean farmers say that China tariffs could do 'serious damage'

> US candidate: 'Outside of Western civilization, there is only barbarism'

Washington Post: Trump's personal calls to world leaders leave aides in the dark

consuming media in 2018.

– eMarketer

w.emarketer.com/topics/topic/time-spent-with-media

World | U.S. Politics | Money | Entertainment | Tech | Sport | Travel | Style | Health | Video | VR

Thai cave rescue begins

Extraction of 12 boys and their soccer coach could take days, officials say

 Full story: 13 divers descend into caves to bring out soccer team

 Heartbreaking letter: Youngest boy dreams of fried chicken

 Photos: Thai soccer team trapped in cave

 Hero: Former Thai navy SEAL diver dies in cave

 Watch: A virtual look inside what cave rescue could look like

 Health: How a lack of oxygen is affecting the Thai soccer team

International Edition + $\mathcal{P} \equiv$

in 2018.

Marketer

spent-with-media

Text Summarization

• To condense a piece of text to a shorter version while maintaining the important points

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

[Date]

Meeting Minutes

Attending

[Name 1] [Name 2]

Announcements

[List all announcements made at the meeting. For example, new members, change of event, and so forth.]

• [Need a heading? On the Home tab, in the Styles gallery, just tap the heading style you want.]

• [Notice other styles in that gallery as well, such as for a numbered list, or a bulleted list like this one.]

Discussion

[Summarize the discussion for each issue, state the outcome, and assign any action items.]

Roundtable

[Summarize the status of each area/department.]

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

Automatic Text Summarization

• To condense a piece of text to a shorter version while maintaining the important points

Extractive Summarization

select text from the article

Abstractive Summarization

generate the summary word-by-word

Extractive Summarization

• Select phrases or sentences from the source document

- Shen, D.; Sun, J.-T.; Li, H.; Yang, Q.; and Chen, Z. 2007. Document summarization using conditional random fields. IJCAI 2007.
- Kågebäck, M., Mogren, O., Tahmasebi, N., & Dubhashi, D. Extractive Summarization using Continuous Vector Space Models. EACL 2014.
- Cheng, J., and Lapata, M. Neural summarization by extracting sentences and words. ACL 2016.
- Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Abstractive Summarization

• Select phrases or sentences from the source document

- Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. EMNLP 2015.
- Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive text summarization using sequencetosequence rnns and beyond. CoNLL 2016.
- Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointergenerator networks. ACL 2017.
- Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. ICLR 2018.
- Fan, Angela, David Grangier, and Michael Auli. Controllable abstractive summarization. arXiv preprint arXiv:1711.05217 (2017).

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Johannes Stoetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Justin Bieber Johanne Stoetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts
- Unified summary:
 - important, correct
 - readable, concise

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Justin Bieber Johanne Goetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. ACL 2017

Models

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. ACL 2017

• Our unified model combines sentence-level and word-level attentions to take advantage of both extractive and abstractive summarization approaches.

$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

• Updated word attention is used for calculating the context vector and final word distribution

Encourage Consistency

• We propose a novel inconsistency loss function to ensure our unified model to be mutually beneficial to both extractive and abstractive summarization.

$$L_{inc} = -\frac{1}{T} \sum_{t=1}^{T} \log(\frac{1}{|\mathcal{K}|} \sum_{m \in \mathcal{K}} \alpha_m^t \times \beta_{n(m)})$$
maximize

where ${\mathcal K}$ is the set of top K attended words

Encourage Consistency

$$L_{inc} = -\frac{1}{T} \sum_{t=1}^{T} \log(\frac{1}{|\mathcal{K}|} \sum_{m \in \mathcal{K}} \alpha_m^t \times \beta_{n(m)})$$

 encourage consistency of the top K attended words at each decoder time step.

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Extractive Summarization

select sentences from the article

Abstractive Summarization

generate the summary word-by-word

- 3 types of loss functions:
 - 1. extractor loss
 - 2. abstracter loss+ coverage loss
 - 3. inconsistency loss

38

Extractor Target

• To extract sentences with high informativity: the extracted sentences should contain information that is needed to generate an abstractive summary as much as possible.

• Ground-truth labels:

 Measure the informativity of each sentence in the article by computing the ROUGE-L recall score between the sentence and the reference abstractive summary.

2. Select the sentence in the order of high to low informativity and add one sentence at a time if the new sentence can increase the informativity of all the selected sentences.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive 40 summarization of documents. AAAI 2017

Combined Attention

- 3 types of loss functions:
 - 1. extractor loss
 - abstracter loss
 + coverage loss

$$L_{abs} = -\frac{1}{T} \sum_{t=1}^{T} \log P_{\hat{y}^t}^{final}$$

3. inconsistency loss

$$L_{cov} = \frac{1}{T} \sum_{t=1}^{T} \sum_{m=1}^{M} \min(\hat{\alpha}_{m}^{t}, c_{m}^{t}) \qquad \mathbf{c}^{t} = \sum_{t'=1}^{t-1} \hat{\alpha}^{t'}$$

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. ACL 2017

42

1.

• 3 types of loss functions:

$$L_{inc} = -\frac{1}{T} \sum_{t=1}^{T} \log(\frac{1}{|\mathcal{K}|} \sum_{m \in \mathcal{K}} \alpha_m^t \times \beta_{n(m)})$$

where \mathcal{K} is the set of top K attended words

abstracter loss 2. + coverage loss

extractor loss

43

- 1. Two-stages training
- 2. End-to-end training without inconsistency loss
- 3. End-to-end training with inconsistency loss

1. Two-stages training

- The extractor is used as a classifier to select sentences with high informativity and output only those sentences. = Hard attention on the original article.
- simply combine the extractor and abstracter by feeding the extracted sentences to the abstracter.

- 2. End-to-end training without inconsistency loss
 - the sentence-level attention is soft attention and will be combined with the word-level attention
 - minimize extractor loss and abstracter loss

$$L_{e2e} = \lambda L_{ext} + L_{abs} + L_{cov}$$

- 3. End-to-end training with inconsistency loss
 - the sentence-level attention is soft attention and will be combined with the word-level attention
 - minimize extractor loss, abstracter loss and inconsistency loss:

$$L_{e2e} = \lambda L_{ext} + L_{abs} + L_{cov} + L_{inc}$$

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Dataset – CNN/DailyMail Dataset

Article \approx 766 words
Summary \approx 53 words

	Train	Validation	Test
Article-summary pairs	287,113	13,368	11,490

STORY HIGHLIGHTS

Bannon was expected to return at 2 p.m. ET Thursday

The postponement follows an exchange of terse letters by the House panel and Bannon's attorney **Washington (CNN)** — The House Intelligence Committee has agreed to give former White House chief strategist Steve Bannon until the end of the month to return to the panel and finish his closed-door interview, according to multiple sources with knowledge of the matter.

Bannon's attorney, in a letter to the committee shared with CNN, said the committee asked that his legal team (...)

Dataset – CNN/DailyMail Dataset

	Article \approx 766 words			Train	Validation	Test
	Summary \approx 53 words	Article-sur	mmary pairs	287,113	13,368	11,490
Highlight	CNN politics STORY HIGHLIGHTS	• •	Washington (CNN) — The Ho	TRUMPMERICA use Intelligence	
50 words	Bannon was expected to return ET Thursday	at 2 p.m.	Steve Bannor	n until the end	/hite House chie of the month to	return to the
	The postponement follows an ex of terse letters by the House par Bannon's attorney		multiple sour	ces with knowl	door interview, a edge of the ma r to the commit	tter.
	`			-		is legal team (

Results – Abstractive Summarization

	Method	ROUGE-1	ROUGE-2	ROUGE-L
	HierAttn (Nallapati et al., 2016b)*	32.75	12.21	29.01
	DeepRL (Paulus et al., 2017)*	39.87	15.82	36.90
	pointer-generator (See et al., 2017)	39.53	17.28	36.38
→	GAN (Liu et al., 2017)	39.92	17.65	36.71
	two-stage (ours)	39.97	17.43	36.34
	end2end w/o inconsistency loss (ours)	40.19	17.67	36.68
	end2end w/ inconsistency loss (ours)	40.68	17.97	37.13
	lead-3 (See et al., 2017)	40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

Results – Abstractive Summarization

Method	ROUGE-1	ROUGE-2	ROUGE-L
HierAttn (Nallapati et al., 2016b)*	32.75	12.21	29.01
DeepRL (Paulus et al., 2017)*	39.87	15.82	36.90
pointer-generator (See et al., 2017)	39.53	17.28	36.38
GAN (Liu et al., 2017)	39.92	17.65	36.71
two-stage (ours)	39.97	17.43	36.34
end2end w/o inconsistency loss (ou	rs) 40.19	17.67	36.68
end2end w/ inconsistency loss (ours	s) 40.68	17.97	37.13
lead-3 (See et al., 2017)	40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

Results – Abstractive Summarization

Method	ROUGE-1	ROUGE-2	ROUGE-L
HierAttn (Nallapati et al., 2016b)*	32.75	12.21	29.01
DeepRL (Paulus et al., 2017)*	39.87	15.82	36.90
pointer-generator (See et al., 2017)	39.53	17.28	36.38
GAN (Liu et al., 2017)	39.92	17.65	36.71
two-stage (ours)	39.97	17.43	36.34
end2end w/o inconsistency loss (ours)	40.19	17.67	36.68
end2end w/ inconsistency loss (ours)	40.68	17.97	37.13
lead-3 (See et al., 2017)	40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

inconsistency step *t_{inc}*:

sentence attention and word attention in time step t

inconsistency rate:

$$R_{inc} = \frac{\operatorname{Count}(t_{inc})}{T}$$

where T is the length of the summary.

Method	avg. R _{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-endtrained model with and without inconsistency loss.

inconsistency step *t_{inc}*:

sentence attention and word attention in time step t

inconsistency rate:

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-endtrained model with and without inconsistency loss.

sentence attention and word attention in time step t

inconsistency rate:

$$R_{inc} = \frac{\operatorname{Count}(t_{inc})}{T}$$

where T is the length of the summary.

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-endtrained model with and without inconsistency loss.

inconsistency step *t_{inc}*:

sentence attention and word attention in time step t

inconsistency rate:

$$R_{inc} = \frac{\text{Count}(t_{inc})}{T}$$

where T is the length of the summary.

			>
	Method	avg. R_{inc}	
	w/o incon. loss	0.198	
	w/ incon. loss	0.042	
Table 3:	Inconsistency ra	ate of our e	end-to-end
trained m	odel with and with	out inconsist	tency loss.

Results – Human Evaluation on MTurk

• Informativity:

how well does the summary capture the important parts of the article?

• Conciseness:

is the summary clear enough to explain everything without being redundant?

• Readability:

how well-written (fluent and grammatical) the summary is?

	S	ummar	ry 1				s	umma	ry 2				S	ummar	ry 3		
Henrik Larsso kit man in goa clean sheet a: manager Hen that I never co	il. The e s Helsin rik Lars	emerger iborg di son sai	ncy sto rew 0-0 d : ' it w	per ke Helsin as a sc	pt a borg enario	Daniel Anders man, kept a c played in seas Larsson's first injured. The fo Sweden back	lean shi son ope -choice ormer g	eet. Th ner ag goalke oalkee	e emerg ainst Ka eepers v	jency st Ilmar. H vere bot	opper enrik th out	Henrik Larsso Andersson wil Matt Pyzdrow stopper kept a against Kalma Helsinborg ma play 42-year-o	th goalk ski out i a clean s ar in the anager i	eepers injured sheet a Ilsvens Henrik	Par Ha The en s Helsir skan sea Larsson	nsson a nergenc nborg dr ason op i was fo	y ew 0-0 ener. rced to
	110	2	3	4	5 I C		110	2	3	4	5 IC		1 🖗	2	3	4	5 I C
Informativity	0	0	0	0	0	Informativity	0	0	0	0	0	Informativity	0	0	0	0	0
Conciseness	0	0	0	0	۰	Conciseness	0	0	0	٥	۰	Conciseness	0	۲	۲	0	0
Readability	0	0	0	۲	•	Readability	0	0	0	۲	۲	Readability	0	0	0	0	0
	S	ummar	ry 4				s	umma	ry 5				SI	ummai	ry 6		
Helsinborg ma play his 42-ye The former Ce option but to p goalkeepers F injured. Ander club between season with S	ar-old k eltic and olay Dar Par Han rsson m 2004 ar	tit man d Barce niel And sson ar ade 13 nd 2009	in goal lona str dersson nd Matt 0 appea 9 and al	on satu iker had with Pyzdro arances so sper	rday. 1 no wski out for the	Henrik Larsso kit man in goa had no option Helsinborg ma with goalkeep Pyzdrowski ou	I. The (but to p anager ers Par	Celtic a play Da Henrik Hanss	nd Barc iniel And Larssor	elona s dersson n was to	triker	A new survey injured while o 68% say they Two in five sai five had cut th	doing Di or their id they i	IY. Poll partne	of 2,000 r have e) people ended u	found p hurt.
play his 42-ye The former Ce option but to p goalkeepers F injured. Ander club between	ar-old k eltic and blay Dar Par Han rsson m 2004 ar	tit man d Barce niel And sson ar ade 13 nd 2009	in goal lona str dersson nd Matt 0 appea 9 and al	on satu iker had with Pyzdro arances so sper	rday. 1 no wski out for the	kit man in goa had no option Helsinborg ma with goalkeep	I. The (but to p anager ers Par	Celtic a play Da Henrik Hanss	nd Barc iniel And Larssor	elona s dersson n was to	triker	injured while of 68% say they Two in five sai	doing Di or their id they i	IY. Poll partne	of 2,000 r have e) people ended u	found p hurt.
play his 42-ye The former Ce option but to p goalkeepers F injured. Ander club between	ar-old k eltic and olay Dar Par Han rsson m 2004 ar scottish	tit man d Barce hiel And sson ar lade 13 nd 2009 club Hil	in goal lona str dersson nd Matt 0 appea 9 and al bernian	on satu iker had with Pyzdro arances so sper	rday. 1 no wski out for the nt a	kit man in goa had no option Helsinborg ma with goalkeep	I. The C but to p anager ers Par ut injure	Celtic a play Da Henrik Hanss ed.	nd Barc iniel And Larssor ion and	elona si dersson n was to Matt	triker . play	injured while of 68% say they Two in five sai	loing Di or their id they i emselv	IY. Poll partne injured es.	of 2,000 r have e their ba) people ended u ck and (o hurt. one in
play his 42-ye The former Ce option but to p goalkeepers F injured. Ander club between season with S	ar-old k eltic and blay Dar Par Han sson m 2004 ar cottish	tit man d Barce niel And sson ar ade 13 nd 2009 club Hill 2	in goal lona str dersson nd Matt 0 appea 9 and al bernian 3	on satu iker had with Pyzdro arances so sper	rday. 1 no wski out for the nt a 5 心	kit man in goa had no option Helsinborg ma with goalkeep Pyzdrowski ou	I. The C but to p anager ers Par at injure	Celtic a olay Da Henrik Hanss ed. 2	nd Barc iniel And Larssor ion and	elona si dersson n was to Matt 4	friker play 5 IC	injured while of 68% say they Two in five sai five had cut th	toing Di or their id they i emselv	IY. Poll partne injured es. 2	of 2,000 r have e their ba	2 people ended u ck and 0	5 IC

Results – Human Evaluation

- Informativity: how well does the summary capture the important parts of the article?
- Conciseness: is the summary clear enough to explain everything without being redundant?
- Readability: how well-written (fluent and grammatical) the summary is?

Method	informativity	conciseness	readability
DeepRL (Paulus et al., 2017)	3.23	2.97	2.85
pointer-generator (See et al., 2017)	3.18	3.36	3.47
GAN (Liu et al., 2017)	3.22	3.52	3.51
Ours	3.58	3.40	3.70
reference	3.43	3.61	3.62

Table 3: Comparing human evaluation results with state-of-the-art methods.

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Conclusion

- We propose a unified model combining the strength of extractive and abstractive summarization.
- A novel inconsistency loss function is introduced to penalize the inconsistency between two levels of attentions. The inconsistency loss enables extractive and abstractive summarization to be mutually beneficial.
- By end-to-end training of our model, we achieve the **best ROUGE scores** while being the **most informative and readable** summarization on the CNN/Daily Mail dataset in a solid human evaluation.

Acknowledgements

Min Sun Wen-Ting Tsu Chieh-Kai Lin Ming-Ying Lee

Kerui Min Jing Tang

Q&A

Project page

- Code
- Test output
- Supplementary material

https://hsuwanting.github.io/unified_summ/