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Overview

Textual Media

People spend 12 hours everyday consuming media in 2018.

– eMarketer
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Overview

Text Summarization

• To condense a piece of text to a shorter version while maintaining the 
important points
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• Article headlines

• Meeting minutes

• Movie/book reviews

• Bulletins (weather forecasts/stock
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Overview

Automatic Text Summarization

• To condense a piece of text to a shorter version while maintaining the 
important points

Extractive Summarization Abstractive Summarization

select text from the article generate the summary word-by-word
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Overview

Extractive Summarization

• Select phrases or sentences from the source document

- Shen, D.; Sun, J.-T.; Li, H.; Yang, Q.; and Chen, Z. 2007. Document summarization using conditional random fields. IJCAI 2007.
- Kågebäck, M., Mogren, O., Tahmasebi, N., & Dubhashi, D. Extractive Summarization using Continuous Vector Space Models. EACL 2014.
- Cheng, J., and Lapata, M. Neural summarization by extracting sentences and words. ACL 2016. 
- Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive 

summarization of documents. AAAI 2017

Representation
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Overview

Abstractive Summarization

• Select phrases or sentences from the source document

- Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. EMNLP 2015.
- Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive text summarization using sequence-

tosequence rnns and beyond. CoNLL 2016.
- Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointergenerator networks. ACL 2017.
- Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. ICLR 2018.
- Fan, Angela, David Grangier, and Michael Auli. Controllable abstractive summarization. arXiv preprint arXiv:1711.05217 (2017).

Encoder
Article

Representations
Decoder



• Extractive summary 
(select sentences):
• important, correct
• incoherent or not concise

• Abstractive summary 
(generate word-by-word):
• readable, concise
• may lose or mistake some facts 

• Unified summary:
• important, correct
• readable, concise
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Overview

Motivation

Italian artist Johannes Stoetter has painted two naked women 
to look like a chameleon.

The 37-year-old has previously transformed his models into 
frogs and parrots but this may be his most intricate and 
impressive artwork to date.

not concise
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Models
Extractor

Method

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural 
network based sequence model for extractive summarization of documents. AAAI 2017
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Combined Attention
Extractor Abstracter

Method

static sentence 
attention

dynamic word 
attention𝛽

𝛼

𝑚: word index
𝑛: sentence index
𝑡: generated word index
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Method

Combined Attention

• Our unified model combines sentence-level and word-level attentions
to take advantage of both extractive and abstractive summarization 
approaches.
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Method

Combined Attention

• Updated word attention is used for calculating the context vector and 
final word distribution
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Method

Encourage Consistency

• We propose a novel inconsistency loss function to ensure our unified 
model to be mutually beneficial to both extractive and abstractive 
summarization.

multiplied attention of 
top K attended words

maximize
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Method

Encourage Consistency

• encourage consistency of the top K attended words at each decoder 
time step.

Sentence 1 Sentence 2 Sentence 3

inconsistent

1.0

0.5K = 2

consistent

inconsistency loss: consistent < inconsistent
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Extractive Summarization Abstractive Summarization

select sentences from the article generate the summary word-by-word

Training Procedures
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• 3 types of loss functions:

1. extractor loss

2. abstracter loss 
+ coverage loss

3. inconsistency loss
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Training Procedures

Extractor Target

• To extract sentences with high informativity:
the extracted sentences should contain 
information that is needed to generate 
an abstractive summary as much as possible.

• Ground-truth labels:
1. Measure the informativity of each sentence in the article by computing the 

ROUGE-L recall score between the sentence and the reference abstractive 
summary.

2. Select the sentence in the order of high to low informativity and add one 
sentence at a time if the new sentence can increase the informativity of all 
the selected sentences.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive 
summarization of documents. AAAI 2017
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Combined Attention

Extractor Abstracterstatic sentence 
attention dynamic word 

attention

𝑚: word index
𝑛: sentence index
𝑡: generated word index

Training Procedures

0.5                         0.5                           0.5



• 3 types of loss functions:

1. extractor loss

2. abstracter loss 
+ coverage loss

3. inconsistency loss

Training Procedures
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Abigail See, Peter J Liu, and Christopher D Manning. 
Get to the point: Summarization with pointer-generator networks. ACL 2017
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• 3 types of loss functions:

1. extractor loss

2. abstracter loss 
+ coverage loss

3. inconsistency loss
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Training Procedures

1. Two-stages training

2. End-to-end training without inconsistency loss

3. End-to-end training with inconsistency loss
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Training Procedures

1. Two-stages training
• The extractor is used as a classifier to select sentences with high informativity

and output only those sentences. = Hard attention on the original article.

• simply combine the extractor and abstracter by feeding the extracted 
sentences to the abstracter.

Extractor
extracted 
sentences

Abstracter summaryarticle
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Training Procedures

2.   End-to-end training without inconsistency loss
• the sentence-level attention is soft attention and will be combined with the 

word-level attention

• minimize extractor loss and abstracter loss

Extractor Abstracter summaryarticle +
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Training Procedures

3.   End-to-end training with inconsistency loss
• the sentence-level attention is soft attention and will be combined with the 

word-level attention

• minimize extractor loss, abstracter loss and inconsistency loss:

Extractor Abstracter summaryarticle +
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Experiment

Dataset – CNN/DailyMail Dataset

Train Validation Test

Article-summary pairs 287,113 13,368 11,490

(…)

Article ≈ 766 words
Summary ≈ 53 words
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Dataset – CNN/DailyMail Dataset

Train Validation Test

Article-summary pairs 287,113 13,368 11,490

(…)

Article ≈ 766 words
Summary ≈ 53 words

Highlight
50 words

Article
700 words
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Experiment

Results – Abstractive Summarization
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Experiment

Results – Inconsistency Rate 𝑅𝑖𝑛𝑐

sentence attention and word attention in time step 𝑡

inconsistency step 𝒕𝒊𝒏𝒄: inconsistency rate:
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Experiment

Results – Human Evaluation on MTurk

• Informativity: 
how well does the summary capture 
the important parts of the article?

• Conciseness: 
is the summary clear enough to 
explain everything without being 
redundant? 

• Readability: 
how well-written (fluent and 
grammatical) the summary is?

trap
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Conclusion and Future work

Conclusion

• We propose a unified model combining the strength of extractive and abstractive 
summarization. 

• A novel inconsistency loss function is introduced to penalize the inconsistency between 
two levels of attentions. The inconsistency loss enables extractive and abstractive 
summarization to be mutually beneficial. 

• By end-to-end training of our model, we achieve the best ROUGE scores while being the 
most informative and readable summarization on the CNN/Daily Mail dataset in a solid 
human evaluation.
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