Our code and datasets are available at https://github. com/acadTags/Automated-Social-Annotation
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Introduction

Social annotation, or tagging, is a popular
functionality allowing users to assign “keywords” to
online resources for better semantic search and
recommendation. In practice, however, only a limited
number of resources is annotated with tags.

We propose a novel deep learning architecture for
automated social text annotation with cleaned
user-generated tags.

Research Questions

How to model the impact of the title on social

annotation? (see Title-Guided Attention Mechanisms) D

How to leverage both similarity and subsumption
relations among labels in neural networks to further
improve the performance of multi-label classification?
(see Semantic-Based Loss Regularizers)

Title-Guided Attention Mechanisms

Word-level attention mechanisms (for the title) [3-4]:
exp Vwt ® Uz)
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Similarly we can obtain ¢, (sentence representation)
and ¢, (content representation based on the original
sentence-level attention mechanism in [3-4]).

Title-guided sentence-level attention mechanisms:
exp(ct @ vy)

e = e
Vp = tanh(Wshr + by)

h; and h, denote the hidden state of word and
sentence, respectively; The W, W, b,, b; are weights
to be learned in training.

Vwes Vwe a@nd v, are global context vectors, i.e. “what
is the informative word [or sentence]” to be learned.
The final document representation is the concatenation
of the title and the content representation.
cd = [ct, Cra, Ca
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JMAN (Joint Multi-Label Attention Network)

The automated social text annotation task can be formally transformed
into a multi-label classification problem.
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Semantic-based Loss Regularizers

Users tend to annotate documents collectively with tags of various
semantic forms and granularities.

The whole joint loss to optimize: L = Log + AiLsim + AoLgwp
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Lsim constrains similar labels to have similar outputs.

Ls,, enforces each co-occurring subsumption pair to satisfy the

dependency of the parent label on the child label.

Sim € (0,1)ITII7I
embeddings pre-trained from the label sets.

is a pre-computed label similarity matrix based on

Sub € {0,1}TTl can be obtained by grounding labels to knowledge bases
(e.g. Microsoft Concept Graph, for the Bibsonomy dataset) or from crowd-

sourced relations (for the Zhihu dataset).

RQ) is rounding function, R(S;;) = 1 when S_dj > 0.5, otherwise R(S4;) = 0.

Conclusions & Future Studies

Experiments show the effectiveness of JMAN with superior performance
and training speed over the state-of-the-art models, HAN and Bi-GRU.
It is worth to explore other types of guided attention mechanisms and to
adapt the regularizers to pre-trained transferable models like BERT.
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Attention visualization of a document in Bibsonomy with the JMAN
model: purple blocks show word-level attention weights; red blocks
in “ori” (original) and “tg” (title-quided) show sentence-level attention

welghts Predlcted Iabels and ground truth labels are also presented.
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Dataset [ X] Y] V] Ave Y sub
Bibsonomy (clean) 12,101 519 17,619 11.59 101,084
Zhihu (sample) 108,168 1,999 62,519 2.45 2,655

|X|, document size; |Y|, label size; |V|, vocabulary size; Ave, average
number of labels per document; . Sub, number of subsumption relations.

Bibsonomy Precision Recall F1 Score Time/Fold
Bi-GRU 522+£.020%  .2174+.016%  .306+.019* | 1480+92s
HAN 572+£.008%  .246+.012%  .344+.013* | 1164+52s
JMAN-s-tg  .591+.010  .2694.006* .370£.007* | 1075+87s
JMAN-s-att .586+.009  .2694+.005* .369+.006* | 968+81s

JMAN-s .586+£.004  .2824+.005  .380+.005 | 894+55s

JIMAN 5924+.009  .284+.006 .384+.007 | 1044+73s

* Paired t-tests at 95 percent significance level against the JMAN model.

Zhihu Precision Recall Fi Score Time/Fold
Bi-GRU 238+.011*  .1544.009* .187£.010% | 1455+69s
HAN 2574+.012 167+.010%  .203+.011% | 1387+78s
JMAN-s-tg .2574.005 1754+.003*  .208+.006** | 1220+81s
JMAN-s-att .2544+.007** .1744+.005* .2074.005* | 1275499s
JMAN-s .2574.008 177£.005  .210+.007 1147+44s
JMAN .260+.006 1794+.003 .212+.004 1135+52s

* Paired t-tests at 95 percent significance level against the JIMAN model.
** Paired t-tests at 90 percent significance level against the JMAN model.

Baselines (tested with models from 10-fold cross-validation):
Bi-GRU: Bidirectional Gated Recurrent Unit [1-2].

HAN: Hierarchical Attention Network [3-4].

JMAN-s: without semantic-based loss regularisers.

JMAN-s-tg: without semantic-based loss regularisers. and the title-
guided sentence-level attention mechanism.

JMAN-s-att: without semantic-based loss regularisers and the original
sentence-level attention mechanism.
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