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1 Proof for Theorem 1

1.1 Background

Here we briefly describe some background knowledge of submodular function maximization.
Formally, submodularity is defined as a property of set functions for a finite discrete universe
set U. A set function F : 2V — R is said to be submodular if: VS, T C U, we have
F(S)+F(T)> F(SUT)+ F(SNT). An equivalent but more intuitive description is known
as the diminishing returns property: VS C T C U \ u, a submodular function F' must satisfy
F(Su{u})—F(S) > F(TU{u}) — F(T). That is to say, the addition of v will bring more
benefit for a smaller set S compared with a larger set 7' O S. The property of diminishing
returns is suitable for document summarization purposes. Once we decide to add a sentence
in the summary, the gain of information should be small when there already exists sufficient
information in the summary.

A set function F is monotone nondecreasing if VS C T, F(S) < F(T). Monotone nonde-
creasing submodular functions will simply be referred to as monotone submodular for short.

Extractive summarization can be easily modeled as submodular maximization problems
when the summary scoring function is defined as a submodular function of sentences.

Normally, the budgeted submodular maximization problem can be efficiently solved by a
greedy algorithm (similar to Algorithm 1 in the submitted paper) with provable guarantees
of a constant approximation factor to the optimal solution.

1.2 Proofs

Here we give a formal proof for Theorem 1 in our main submission. This part is inspired by
[1] which provides an approximation guarantee for a fully submodular scoring function.



Notation: S; denotes the collection of selected items (compressed sentence) in the i-th
iteration, with the item added in this iteration denoted as s;. C(S) denotes the total cost
of the collection S (similarly C(s) denotes the cost of a single item s) and B denotes the
budget. We assume the optimal solution is OPT'.

We use as a shorthand notation for the distortion term: A(s;) = dist(y(s;)) > 0. We also
generalize this notation to sets: A(S) =) _¢dist(y(s)). This term decomposes with every
sentence s inside. We also denote the monotone submodular part of F' as f, therefore we
have F/(S) = f(S)+nA(S). For the i-th iteration, denote OPT'\ S;—1 = {uy, ..., Un} = ul".

As there is often a distortion limit |start(p) — 1 — end(p)| < ¢ in phrase-based MT
systems for ensuring decoding efficiency and translation quality, we introduce a reasonable
assumption !

Assumption 1.
or equivalently,

where v is a bounded constant that is relatively small in practice compared with the
value of the submodular score f(S). n < 0 is the common distortion parameter.

Lemma 2. Fori=1,...,l+ 1, we have
C(si Cls,
F(S) = F(Siy) > g)( (OPT) — F(Si1)) + (SB)W

Proof.

F(OPT) = F(S;-1) = [f(OPT)+nA(OPT) — f(Si-1) — nA(Si-1)
f(OPT) = f(Si—1) + nA(OPT \ Si1) — ny
JOPT U Si1) — f(Sic1) + nA(OPT \ Si1) —ny

F(OPTUS;_1) — F(Si—1) — 1.
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using Assumption 1 in the first and monotonicity of f in the second inequality.
Denote Z; = F(S;_1 Uul) — F(S;_1 Uul "), we have
Zj . f(Sica Uuy) = f(Sic1) = Auy)  F(Sica Uwy) — F(Siz1) _ F(Si) — F(Si1)
Cu;) ~ C(uy) C(uy) C(s:)
using submodularity of f in the first and the greedy selection strategy (Algorithm 1 in the
main submission) in the second inequality. Since > 7| C(u;) < B, it holds that
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F(S;) — F(S;-1)
Sy —n-

F(OPT)-F(Si.)) <> Zj—ny<B

[]

I'Note that this assumption will not directly lead to the main result since we are optimizing a different
objective function and using a different greedy selection strategy, compared with the original submodular
maximization case presented in previous work.




Lemma 3. Fori=1,...,l+ 1, we have

F(s) > - [Ja - S ropr) .

k=1

Proof. Note that the budget constraint will make C'(S;) < B for any 7. We give a proof by
induction. For ¢ = 1, we have

0(51) 0(51)777 0(51)
> >
F&)z =5 B - B
due to Lemma 2 and C(S;) < > . C(S;) < B. For i > 1:

F(OPT) + (OPT) + 1y

> F(Si1) + Cgi> [F(OPT) — F(S;_1)] + @
= - D ks + Q0 popr) I
2 (1= Cgi))[(l N ﬁ(l - Cgk)))F(OPT) +m] + C(gi)F(OPT) + @
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using Lemma 2 in the first and the induction hypothesis (Lemma 3 is true for ¢ — 1) in the
second inequality. O

We restate our main result here, i.e. Theorem 1 in the main submission:

Theorem 4. If Algorithm 1 outputs SI¢°W, we have

1 1
F(S9recdv > 5(1 — e HF(OPT) + 3
Proof. Exactly the same as the proof of Theorem 1 in [1], using our Lemma 2 and Lemma 3

and changing the constant term into 7. O

2 Example System Outputs

Figure 1 lists the summaries for the first document set (D04) in the DUC 2001 dataset,
produced by systems in comparison. The summaries are produced under the sentence bud-
get setting, i.e. limiting total number of sentences no more than five. Those who can read
Chinese texts will observe that our compressive system tries to compress sentences by re-
moving relatively unimportant phrases. The effect of translation errors can also be reduced
since those incorrectly translated words will be dropped for having low information gains.
In some cases the grammatical fluency can even be improved from sentence compression, as
redundant parentheses may sometimes be removed.
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Figure 1: Example system outputs
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