

Sensitivity of automated models for MT evaluation: proximity-based vs. performance-based methods

Bogdan Babych, Anthony Hartley {b.babych,a.hartley}@leeds.ac.uk Centre for Translation Studies University of Leeds, UK

Overview

- Classification of automated MT evaluation models
 - Proximity-based vs. Performance-based vs. Hybrid
- Some limitations of MT evaluation methods
- Sensitivity of automated evaluation metrics
 - Declining sensitivity as a limit
- Experiment: measuring sensitivity in different areas of the adequacy scale
 - BLEU vs. NE-recognition with GATE
- Discussion: can we explain/predict the limits?

Classification of MT evaluation^{at the University of Leeds} models

- Reference proximity methods (BLEU, Edit Distance)
 - Measuring distance between MT and a "gold standard" translation
 - "...the closer the machine translation is to a professional human translation, the better it is" (Papineni et al., 2002)
- Performance-based methods (X-score, IE from MT...)
 - Measuring performance of some system which uses degraded MT output: *no need for reference*
 - "...can someone using the translation carry out the instructions as well as someone using the original?" (Hutchins & Somers, 1992: 163)

Performance-based evaluation

- Metrics rely on the assumptions:
 - MT errors more frequently **destroy** contextual conditions which trigger rules
 - rarely **create** spurious contextual conditions
 - Language redundancy: it is easier to destroy than to create
 - E.g., (Rajman and Hartley 2001)
 - X-score = (#RELSUBJ + #RELSUBJPASS #PADJ – #ADVADJ)
 - sentential level (+) vs. local (-) dependencies
 - contextual difficulties for automatic tools are ~ proportional to relative "quality"
 - (the amount of MT "degradation")

11 Sept 2007	
--------------	--

Performance-based evaluation

- NER system (ANNIE) <u>www.gate.ac.uk</u>:
 - the number of extracted Organisation Names gives an indication of Adequacy
 - ORI: ... le chef de la <u>diplomatie égyptienne</u>
 - HT: the <Title>Chief</Title> of the <Organization>Egyptian Diplomatic Corps </Organization>
 - MT-Systran: the <JobTitle> chief </JobTitle> of the Egyptian diplomacy

5

Performance-based evaluation: number of NEs extracted from MT

MT Summit 2007 Sensitivity of Automated MT evaluation models

Classification of MT evaluation^{at the University of Leeds} models: hybrid methods

- Performance+proximity-based
 - Comparing **performance** of an MT system measured by a **proximity** metric (e.g., BLEU) on texts with varying difficulty
 - need ref.system & correlated automated scores
 - e.g., Difficulty Slope: shows how systems cope with increasing difficulty of segments / texts (Babych, Hartley, Sharoff, 2007)

presentation tomorrow

 Computing **proximity** to **performance** figures on gold standard translation

• e.g., Recall of NE extracted from HT vs. MT

Hybrid evaluation: Recall of Organisation names in MT vs. HT

CENTRE FOR

Sensitivity of Automated MT evaluation models

Some limits of automated MT^{TRANSLATION STUDIES} evaluation metrics

- Automated metrics useful if applied properly
 - E.g., BLEU: Works for monitoring system's progress, but not for comparison of different systems
 - doesn't reliably compare systems built with different architectures (SMT, RBMT...) (Callison-Burch, Osborne and Koehn, 2006)
 - Low correlation with human scores on text/sent. level
 - min corpus ~7,000 words for acceptable correlation
 - not very useful for error analysis

... limits of evaluation metrics – beyond correlation

- High correlation with human judgements not enough
 - End users often need to predict human scores having computed automated scores (MT acceptable?)
 - Need regression parameters: Slope & Intercept of the fitted line
- Regression parameters for BLEU (and its weighted extension WNM)
 - are different for each Target Language & Domain / Text Type / Genre
 - BLEU needs re-calibration for each TL/Domain combination

(Babych, Hartley and Elliott, 2005)

11	Se	pt	20	07
----	----	----	----	----

MT Summit 2007 Sensitivity of Automated MT evaluation models

Sensitivity of automated evaluation metrics

- 2 dimensions not distinguished by the scores
 - A. there are stronger & weaker systems
 - B. there are easier & more difficult texts / sentences
- A desired feature of automated metrics (*in dimension B*):
 - To distinguish correctly the quality of different sections translated by the same MT system
- Sensitivity is the ability of a metric to predict human scores for different sections of evaluation corpus
 - easier sections receive higher human scores
 - can the metric also consistently rate them higher?

Sensitivity of automated metrics

- Are the dimensions A and B independent?
- Or does the sensitivity (*dimension B*) depend on the overall quality of an MT system (*dimension A*)?
 - (does sensitivity change in different areas of the quality scale)
- Ideally automated metrics should have homogeneous sensitivity across the entire human quality scale
 - for any automatic metric we would like to minimise such dependence

Varying sensitivity as a possible limit of automated metrics

- If sensitivity declines at a certain area on the scale, automated scores become less meaningful / reliable there
 - For comparing easy / difficult segments generated by the same MT system
 - But possibly also for distinguishing between systems at that area:

Experiment set-up: dependency at the University of Leeds between Sensitivity & Quality

- Stage 1: Computing approximated sensitivity for each system
 - BLEU scores for each text correlated with human scores for the same text
- Stage 2: Observing the dependency between the sensitivity and systems' quality
 - sensitivity scores for each system (from Stage 1) correlated with ave. human scores for the system
- Repeating the experiment for 2 types of automated metrics
 - Reference proximity-based (BLEU)
 - Performance based (GATE NE recognition)

11 Sept 2007	MT Summit 2007	13	ा ा
	Sensitivity of Automated MT evaluation models	UNIVER	DS

Stage 1: Measuring sensitivity of Leeds automated metrics

- Task: to cover different areas on adequacy scale
 - We use a range of systems with different human scores for Adequacy
 - DARPA-94 corpus: 4 systems (1 SMT, 3 RBMT) + 1 human translation, 100 texts with human scores
- For each system the sensitivity is approximated as:
 - r-correlation between BLEU / GATE and human scores for 100 texts

Stage 2: capturing dependencies: system's quality and sensitivity

- The sensitivity may depend on the overall quality of the system
 - is there such tendency?
- *System-level* correlation between
 - sensitivity (*text-level* correlation figures for each system)
 - and its average human scores
- Strong correlation not desirable here:
 - E.g., strong negative correlation: automated metric looses sensitivity for better systems
 - Weak correlation: metric's sensitivity doesn't depend on systems' quality

1	Sept 2007	

Compact description of experiment set-up

 $rCorrel(System) \left[\frac{humanScore(ade)}{rCorrel(Text) \left[\frac{humanScore(ade)}{bleuScore(n4r1) \lor neGate(organisation)} \right]} \right]$

- Formula describes the order of experimental stages
- Computation or data + arguments in brackets (in enumerator & denominator)
- Capital letters = independent variables
- Lower-case letters = fixed parameters

Results

11 Sept 2007

	BLEU/ade	BLEU/flu	GATE/ade	GATE/flu
system-correl	0.9535	0.995	0.8682	0.9806
sensitivity-correl	-0.7614	-0.1265	-0.2188	-0.2384

- R-correlation on the system level lower for NE-Gate
- BLEU outperforms GATE
 - But correlation is not the only characteristic feature of a metric ...

Results

	BLEU/ade	BLEU/flu	GATE/ade	GATE/flu
system-correl	0.9535	0.995	0.8682	0.9806
sensitivity-correl	-0.7614	-0.1265	-0.2188	-0.2384

- Sensitivity of BLEU is much more dependent on MT quality
 - BLEU is less sensitive for higher quality systems

Results (contd.)

Discussion

- Reference proximity metrics use *structural* models
 - Non-sensitive to errors on higher level (better MT)
 - Optimal correlation for certain error types
- Performance-based metrics use *functional* models
 - Potentially can capture degradation at any level
 - E.g., better capture legitimate variation

Conclusions and future work

- Sensitivity can be one of limitation of automated MT evaluation metrics:
 - Influences reliability of predictions at certain quality level
- Functional models which work on textual level
 - can reduce the dependence of metrics' sensitivity on systems' quality
- Way forward: developing performance-based metrics using more adequate functional models
 - E.g., non-local information (models for textual coherence and cohesion...)

MT Summit 2007
Sensitivity of Automated MT evaluation models

11 Sept 2007

