
On Some Similarities Between D-'free
Grammars and Type-Logical Grammars

Mark Hepple
Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello Street, Sheffield Sl 4DP, UK
hepple©dcs.shef.ac.uk

1 Introduction

This paper discusses some similarities between D
Tree Grammars and type-logical grammars that are
suggested in the context of a parsing approach for
the latter that involves compiling higher-order for
mulae to first-order formulae. 1 This comparison sug
gests an approach to providing a functional seinan
tics for D-Tree derivations, which is outlined.

2 D-Tree Grammars

The D-Tree Grammar (DTG) formalism is intro
duced in (Rambow et al., 1995). The basic deriva
tional unit of this formalism is the d-tree, which
(loosely) consists of a collection of tree fragments
with domination links between nodes in different
fragments (that link them into a single graph).

(l) S'

~
l'lPt S

YP(fln:-J

~
V NP

1 1
to a.dore

The above example d-tree, drawn from (Rambow et
al., 1995), allows topicalisation of the verb's object,
as in (e.g.) Hotdogs;, he claims Mary seems to adore
t;, where NP1 is the fronted object, and NP2 the
verb's subject. 2 The main operation3 for composing
d-trees is subsertion, which, loosely, combines two
d-trees to produce another, by substituting a frag
ment of one at a suitable node in the other, with
other (dominating) fragments of the first being in
tercalated into domination links of the second. The
approach is motivated by problems of relate.d for
maiisms (such as TAG and MCTAG-DV) involving

1See (Joshi et a/., 1997; Henderson, 1992) for other
work connecting categorial formalisms (Lambek calculus
and CCG, respectively) to tree-oriented formalisms.

2 The indexation is my own, for expositional purposes.
3 A second operation, sister-adjunction, used in han

dling modification, is discussed later in the paper.
~ t>.Iulti-Component TAG with Domination Links

(Becker et al., 1991).

66

linguistic coverage and the semantic interpretation
of derivations.

3 Type-logical Grammar

The associative Lambek calculus (Lambek, 1958) is
the most familiar representative of the 'type-logical'
tradition within categorial grammar, but a range of
such systems have been proposed, which differ in
their resource sensitivity (and hence, implicitly, their
underlying notion of 'linguistic structure'). Some of
these proposals are formnlated nsing a 'labelled de
duction' methodology (Gabbay, 1996), whereby the
types in a proof are associated with labels, nnder a
specified discipline, which record proof information
used in ensuring correct inferencing. Such a labelling
system must be overlaid upon a 'backbone logic',
commonly the implicational or multiplicative5 frag
ment of linear logic. For this paper, we can ignore
labellings, and instead focus on the 'core functional
structure' projected by linear formulae. 6

4 Implicational Linear Logic &
First-order Compilation

In linear logic proofs, each assumption is used pre
cisely once. Natural dednction mies of elimination
and introduction for linear implication (o-) are:7

(2) Ao-B : a B: b
o-E

A:(ab)

(B:v]
A:a

----o-1
Ao-B: >.v.a

The proof in (3) illustrates 'hypothetical reason
ing', where an additional assumption, or 'hypothet
ical', is used that is latter discharged. The involve
ment of hypotheticals is driven by the presence of
higher-order formnlae (i.e. functors seeking an ar
gument that bears a functional type): each corre
sponds to a subformula of a higher-order formula,

~The multiplicative fragment extends the implica
tional one with © ('tensor'), akin to the Lambek product.

8 This means, most notably, that the representations
discussed Jack any encoding o{ linear order requirements,
which would be handled within the labelling system.

7 Eliminations and introductions correspond to steps
of functional application and abstraction, respectively,
as the lambda-term labelling reveals. In the o-I rule,
[B] indicates a discharged or withdrawn assumption.

e.g. Z in (3) is a subformula of Xo-(Yo-Z).8

(3) Xo-(Yo-Z):x Yo-W:y Wo-Z:w [Z:z]

W:(wz)

',.'. ~y(wz))

Yo-Z: „>.z.y(wz)

X: x(.Az.y(wz))

Hepple (1996) shows how deductions in implica
tional linear logic can be recast as deductions in
volving only first-order formulae (i.e. where any ar
guments sought by functors bear atomic types) and
using only a single inference rule (a variant of o-E).
The compilation reduces higher-order formulae to
first-order formulae by excising subformulae corre
sponding to hypotheticals, e.g. so Xo-(Yo-Z) gives
Xo-Y plus Z. A system of indexing is used to ensure
conect use of excised subformulae, to prevent invalid
reasoning, e.g. the excised Z must be used to derive
the argument of Xo-Y. Each compiled formula has
an index set with one member (e.g. {j} :Z), which
serves as its unique identifier. The index set of a de
rived · formula identifies the assumptions used to de
rive it. The single inference rule (4) ensures correct
propagation of indices (where \±l is disjoint union).
Each argument slot of a compiled functor also has
an index set, which identifies any assumptions that
must be used in deriving its argument, as enforced
by the rule condition a ~ ,P.

{i}:Xo-(Y:{j}) {k}:Yo-(W:0) {l}:Wo-(Z:0) {j}:Z
>.t.x(.Az.t) >.u.yu .Av.wv z

{j,l} :W :wz

{j, k, l} : Y: y(wz)

{i,j, k, l}: X: x(.Az.y(wz))

In proving Xo-(Yo-Z), Yo-W, Wo-Z =>X, for
example, compilation yields the assumption formu
lae of the proof above. The leftmost (Fl) and right
most (F2) assumptions both come from Xo-(Yo-Z),
and Fl requires its argument to include F2. Compi
lation has removed the need for an explicit introduc
tion step in the proof, c.f. proof (3), but the effects
of this step have been compiled into the semantics of
the formulae. Thus, the term of Fl includea an ap
parently vacuous abstraction over variable z, which
is the term assigned to F2. The semantics of rule
(4) is handled not by simple application, but rather
direct substitution for the variable of a lambda ex
pression, employing a version of substitution which
specifically does not act to avoid accidental binding.
Hence, in the final step of the proof, the variable

6The relevant subformulae can be precisely char
acterised in terms of a notion polarity: hypothetica.ls
correspond to maximal positive-polarity subformulae of
hlgher-order forrnulae. See (Hepple, 1996) for details. ·

67

z falls within the scope of the abstraction, and so
becomes bound.

(4) </>: Ao-(B:a): .Av.a ,P: B: b

1r:A:a[b/v)

5 Relating The Two Systems
The above compilation produces results that bear
more immediate similarities to the D-Tree approach
than the original type-logical system. First-order
formulae are easily viewed as tree fragments (in a
way that higher-order formulae are not), e.g. a word
w with formula so-npo-pp might be viewed as akin
to (5a) below (modulo the order of daughters which
is not encoded). For a higher-order formula, the
inclusion requirement between its first-order deriva
tives is analogous to a domination link within a d
tree, e.g. a relative pronoun relf(s/np) would yield
rel o-s plus np, which we can view as akin to (5b).

(5) (a)

(6)

~
;o-np np

~
• o-np o-pp PP

1

(a) X

/'---...
Xo-Y Y

:
z.
1
"

(b) rol

~
rel o-.s

wbich np

1
rel

e

(b)
„.~
~.

rol 0-1 o-pp PP
PP

c np 1

which

By default, it is natural to associate the string
of the initial formula with its main residue un
der compilation, as in (5b). Following proposals
in (Moortgat, 1988; 1996), some categorial systems
have used connectives l ('extraction') and ! ('infixa
tion'), where YlZ is a "Y missing Z somewhere" and
a type Xl(YTZ) infixes its string to the position of
the missing Z. Thus, a word w with type X!(YjZ),
compiling to Xo-Y and Z, is akin to (6a). For
example, the PP pied-piping relative pronoun type
rel/(slpp)!(ppjnp), from (Morrill, 1992), which in
fixes to an NP site within a PP, is akin to (6b).

6 A Functional Approach to
Interpreting DTG Derivations

The rest ofthis paper explores the idea ofproviding a
functional semantics for DTG derivations, or rather
of some DTG-like formalism, in a manner akin to
that of categorial grammar. The approach envisaged
is one in which each tree fragment (i.e. maximal
unit containing no dominance links) of an initial d
tree is associated with a lambda term. At the end
of a derivation, the meaning of the resulting tree
would be computed by working bottom up, applying

the meaning term of each basic tree fragment to the
meanings computed for each complete subtree added
in at the fragment's frontier nodes, in some fixed
fashion (e.g. such as in their right-to-left order).
Strictly, terms would be combined using the special
bt...~stitution operation of rule (4) (allowing variable
capture in the manner discussed). Suitable terms to
associate with tree fragments will be arrived at by
exploiting the analogy between d-trees and higher
order formulae under compilation.

(7) s
/"'-.. : >.dy.(saw x 11)

NP VP

NP NP
:m :j

John

/"'-..
V NP Re!

/"-.... : >.u.which(>.:.u)
„„ NP...,h S

1 :
which N'P

l : %

(8) (a) 5 (b) Re!

/"'-.. /"'-..
NP..,h s NP VP

/"'-.. 1 ~ 1
„bkh NP VP

Mary V NP
~ 1 1

Mary V NP „„ John
1

HW L

For example, consider a simple grammar consist
ing of the four d-trees in (7), of which only that for
which has more than one fragment. Each tree frag
ment is associated with a meaning term, shown to
the right of ":". The two fragments in the d-tree
for which each have their own term, which are pre
cisely those that would be assigned for the two com
piled formulae in (5b) (assuming the meaning term
for the precompilation formula rel/(s/np) tobe just
which). This grammar allows the phrase-structure
(8a) for Mary saw John, whose interpretation is pro
duced by 'applying' the term for saw to that for the
NP John (i.e. the subtree added in at the right
most frontier node of saw's single tree fragment),
and then to that ofthe NP Mary, giving {saw j m).
The grammar allows the tree {8b) for the relative
clause which Mary saw.9 Here, the object position
of saw is filled by the lower fragment of which 's d
tree, so that· the subtree rooted at S has interpre
tation (saw z m). Combining this with the term
of the upper fragment of which gives interpretation
whicb(>.z.saw z m).

The tree composition steps required to derive the

9 The treatment of wh-movement here exemplified is
useful for exposHional purposes, but clearly differs from
the standard TAG/DTG approach, where a moved wh
item originates with a structure that includes the gov
ernor of the extraction site (typically a verb that sub

. categori.ses for the moved item). Such structurea present
no problem for this approach, i.e. we could simply pre-
combine the d-trees of which and aaw given in (7).

trees in (8) would be handled in DTG by the sub
sertion operation. As noted earlier, DTG has a sec
ond composition operation sister-adjunction, used in
handling modification, which adds in a modifier sub
tree as an additional daughter to an already exist
ing local tree. A key motivation for this operation is
so that DTG derivation trees distinguish argument
vs. modifier dependencies, so as to provide an ap
propriate basis for interpretation. Categorial gram
mars typically make no such distinction in syntac
tic derivation, where all combinations are simply of
functions and arguments. Rather, the distinction is
implicit as a property of the lexical meanings of the
functions that participate.10 Accordingly, we recom
mend elimination of the sister-adjunction operation,
with all composition being handled instead by sub
sertion. Thus, a VP modifying adverbial might have
d-tree {9a), and give structures such as (9b) .11

(9) (b) s

~
(a)

VP NP VP

1 /"'-..
Mary VP Adv

~: >.x.(clearly x)
VP Adv

~I
cleuly V NP clearly

l&W John

(10) (a) s

~
(b)

: O'!

np • o-np
NP VP

~
VP
~ : p
V NP

1 o-npo-vp vp

1
vp

~
vp o-np llp nw

u1 = >.x>.y.((>.f.f saw)(>.p.x)y)

Such an analysis requires a different lexical d-tree
for saw to that in (7), one where the VP node is
'stretched' as in (!Ob) to allow possible inclusion
of modifiers. As a basis for arriving at suitable
functional semantics for (!Ob), consider the follow
ing. A categorial approach might make saw a func
tor (np\s)/np with semantics saw. This functor
could be type-raised to (np\s)!((np\s)t((np\s)/np))
with semantics (>.f.f saw). By substituting ·the
two embedded occurrences of (np\s) with the atom
vp we get (np\s)!(vpi(vp/np)), which compilea to
first-order formulae as in {lOa), which are analo
gous to the desired d-trec {lüb), so providing the
meaning terms there assigned. Using (!Ob) to de
rive the structure (Sa) involves identifying the two

10 This is not to say that the distinction has no ob
servable refiex: mod.ifiers are in general recognisable as
endocentric categorial functors (i.e. having the same ar
gurnent and result type).

11 Such an analysis is more in line with the standard
TAG treatment than that of DTG.

68

VP nodes. Such a derivation gives the interpre
tation ((>././ saw)(>.p.p j)m) which simplifies to
(saw j m). A derivation of (9b) gives interpretation
((>././ saw)(>.p.clearly(p j))m) which simplifies to
(clearly (saw j) m).

For a ditransitive verb, we might want a structure
providing more than one locus for inclusion of mod
ifiers, such as (11). The semantica provided for this
d-tree is arrived at by a similar process of reasoning
to that for the previous case, except that it involves
type-raising the initial categorial type of the verb
twice (hence the subterm (>.g.g(>.f.f sent)) of the
upper fragment's term).

(11) B
/'-...... : >.x>.y.((>..g.g(>.f.f sent))(Ap.x)y)

NP VP
1

:
~ : >.11>.w.(p(>.q.v)w)
~ PP

~
/'-...... : q

V NP

uni

The interpretation approach outlined appears
quite promising so far. We next consider a case
it does not handle, which reveals something of its
Iimitations: quantification. Following a suggestion
of (Moortgat, 1996), the connectives t ('extraction')
and ! ('infixation') have been used in a categorial
treatment of quantification. The lexical quantified
NP everyone, for example, might be assigned type
s!(sfnp), so that it has scope at the level of some
sentence node but its string will appear in some NP
position. First-order compilation yields the results
(12a). The corresponding d-tree (12b) is unusual
from a phrase-structure point · of view in that it 's
upper fragment is a purely interpretive projection,
but this d-tree would serve to produce appropriate
interpretations. So far so good.

A simple quantifier every has type s!(sfnp)/n,
to combine firstly with a noun, with the combined
atring of every+noun then infixing to a NP position.
First-order compilation, however, produces the re
sult (13a), comparable to the d-tree (13b), which is
clearly an inappropriate atructure. What we would
hope for is a structure more like that in (13c), but
although it is perfectly possible to apecify an ini
tial higher-order formula that produces first-order
formulae comparable to this d-tree, the results do
not provide a suitable basis for interpretation. More
generally, the highly restrictive approach to seman
tic composition that is characteristic of the approach
outlined is such tbat a fragment cannot have scope
above its position in structure (although a d-tree
having multiple fragments has access to multiple
possible scopes). This means, for example, that no

semantics for (13c) will be able to get hold of and
manipulate the noun 's meaning as something sepa
rate from that ofthe sentence predicate (c.f. sjnp),
rather the former must fall within the latter .12

(12) (a)
/"-.....

• o-•

np

1
everyone

(13) (a)

/"-.....
• <>--•

/"-.....
• 0-1 o-n n np

1
e every

References

(b) s
1 : >.x.everyone(>.z.x)
s
:
' NP
1 : z

everyone

(b) s

~
N S

1

:
NP

erety

(c) s
1
s
1
1
1

NP

/'-......
Dei N

Becker, T., Joshi, A. & Rambow, 0. 1991. 'Long
distance scrambling and tree adjoining grammars.
Proc. EACL-91.

Gabbay, D. 1996. Lahelled deductive systems. Vol
ume 1. Oxford University Press.

Henderaon, J. 1992. 'A Structural Interpretation of
CCG.' UPenn Tech. Report, MS-CIS-92-49.

Hepple, M. 1996. 'A Compilation-Chart Method for
Linear Categorial Deduction.' Proc. COLING-96.

Joshi, A. & Kulick, S. 1997. 'Partial proof trees as
building blocke for a categorial grammar .' Lin
guisfüs and Philosophy.

Lambek, J. 1958. 'The mathematics of sentence
structure.' American Mathematical Monthly, 65.

Moortgat, M. 1988. Categorial Investigations: Logi
cal and Linguistic Aspects of the Lamhek Calculus.
Foris, Dordrecht.

Moortgat, M. 1996. 'Generalized quantifiers and dis
continuous constituency.' H. Bunt and A. van
Horck {eds). Discontinuous Constituency, Mou
ton .de Gruyter.

Morrill, G. 1992. 'Categorial Formalisation of Rel
ativisation: Pied Piping, Islands and Extraction
Sites.' Research Report LSI-92-23-R, Universitat
Politecnica de Catalunya.

Rambow, 0., Vijay-Shanker, K. & Weir, D. 1995.
'D-Tree Grammars.> Proc. ACL-95.

Shieber, S.M. & Schabes, Y. 1990. 'Synchronous
tree-adjoining grammar.' Proc. COLING-90.

12 See (Shieber & Schabes, 1990) for a treatment of
quantification within the Synchronous TAG forma.lism,
in which the semantics is treated as a second system
of tree representations that are operated upon syn
chronously with syntactic trees. Their account cannot
be adapted to the prei;ent approach because their op
erations upon syntactic and semantics representations,
though aynchronous, are not parallel in the way that is
rigidly required in categoria.l semantics.

69

