THE PARALLEL EXPERT PARSER: A MEANING-ORIENTED,
LEXICALLY-GUIDED, PARALLEL-INTERACTIVE

MODEL OF NATURAL LANGUAGE UNDERSTANDING

G. ADRIAENS
Siemens NLP Research
& Katholieke Universiteit Leuven
M. Theresiastraat 21
B-3000 Leuven, Belgium
+32 16 285091
(siegeert@ kulcs.uucp or
siegeert@ blekul60.bitnet or
siegeertScs.kuleuven.ac.be)

Abstract

The Parallel Expert Parser (PEP) is a natural language analysis model
belonging to the interactive model paradigm that stresses the parallel
interaction of relatively small distributed, knowledge components to arrive
at the meaning of a fragment of text. It borrows the idea of words as
basic dynamic entities triggering a set of interactive processes from the
Word Expert Parser (Small 1980), but tries to improve on the clarity of
interactive processes and on the organization of lexically-distributed
knowledge. As of now, especially the procedural aspects have received
attention: Instead of having wild-running uncontrollable interactions,

PEP restricts the interactions to explicit communications on a structured
blackboard; the communication protocols are a compromise between maximum

parallelism and controllability. At the same time, it is no longer just
words that trigger processes; words create larger units (constituents),
that are in turn interacting entities on a higher level. Lexical
experts contribute their associated knowledge, create higher-level
experts, and die away. The linguists define the levels to be considered,
and write expert processes in a language that tries to hide the procedural
aspects of the parallel-interactive model from them. Problems include

the possibility of deadlock situations when processes wait infinitely for
each other, the way to efficiently pursue different alternatives (as of
now, the system just uses don't-care determinism), and testing whether the

protocols allow linguists to fully express their needs. PEP has
been implemented in Flat Concurrent Prolog, wusing the Logix programming
environment. Current research is oriented more towards the problem of
distributed knowledge representation. Abstractions and generalizations
across lexical experts could be made using principles from object-oriented
programming (introducing generic, prototypical experts; cp. Hahn 1987)
Thoughts also go in the direction of an integration of the coarse-grained
parallelism with knowledge representation in a fine-grained parallel

(connectionist) way.

-309- International Parsing Workshop '89

1. Introduction

In the course of the last decade, interest
applications has steadily been growing in
deal with natural language understanding
the first place for researchers in computer

always been interested in computational processes
(computational)

Recent developments in

linguistics

in parallel machines and
different disciplines that

This of course hold3 in
science and Al, who have
(see e.g. Kowalik 1988).
and cognitive

psycholinguistics show that these NLU-related disciplines have also been

moving towards parallel models. A

development is the rapidly growing interest

factor influencing this

Interactive approaches to

NLU (see e.g. Briscoe 1987, Altmann Altmann & Steedman 1988).
Briefly, these models move away from the traditional linguistics-inspired
views of language understanding as non-interactive, i.e. as a serial
application of processing modules whose sole means of communication is a
unidirectional input-output channel (cp. Forster 1979). There is a growing
belief (based on experience in computational linguistics and on
psycholinguistic experimentation) that non-interactive models are
incorrect, and interactive ones allowing more flexible communications
among components (mainly to deal with ambiguity) prove to be superior.

Although matters are more complicated than

that Interactive models lend themselves easily
forthcoming).

(see also Adriaens & Hahn

stated here, it will be clear
to parallel architectures
For the presentation of the

Parallel Expert Parser, I will only briefly distinguish two kinds of
approaches to parallel NLU. On the one hand, there is what can be called
flne-graln parallelism; on the other hand, there is coarse-graln
parallelism. With flne-graln parallel NLU refer basically to the
connectionist approach and its decendants. Connectionist models
feature huge networks of small nodes of information; computation is
represented by fluctuations of the activation levels of nodes and by
(parallel) transmission of excitation and inhibition along connections.
(For connectionism in general, see Feldman & Ballard 1982, VanLehn 1984,
Hillis 1986, McClelland & Rumelhart 1986; connectionist models of NLU,
see Cottrell & Small 1983, Cottrell 1985, Pollack & Waltz 1985, McClelland
& Rumelhart 1986). With coarse-graln parallel NLU, | refer to a more
modest Kkind, in which the smallest item information is more complex

than a node in a connectionist model (it may be
computation involving the items

in which one attempts to keep the parallel

of information more under control than can
model. (For examples of coarse-grain

rule, for instance), but

done in a connectionist

parallel NLU, see Hirakawa

1983, Matsumoto 1987 or Granger, Eiselt & Holbrook 1986).

The research presented here is of the

latter type of parallel NLU.

A potentially parallel NLU system (the Word Expert Parser, Small 1980) has

been drastically revised so as to allow

(viz. in Flat Concurrent Prolog, using the
et al. 1986)); we call the resulting system

(PEP, Devos 1987).

2. The Word Expert Parser (WEP) revisited

The Word Expert Parser (WEP, Small

understanding program in the Al tradition

truly parallel implementation
Logix environment (Silverman
the Parallel Expert Parser
1980) is a natural language

semantic parsing (see also

Hirst 1983, Hahn 1986/1987, Cottrell Adriaens 1986al/b for
WEP-inspired or -related work). The organization of the model differs
strongly from that of a "cla33ical, NLU system. Rather than having a
number of components of rules that are applied (serially) to linguistic

-310-

International Parsing Workshop '89

input by a general process, WEP considers the words themselves as active

agents (word experts) that interact with each other and with other
knowledge sources in orderto find the meaning of a fragment of text.
Words are implemented as coroutines, i.e. processes that run for a

while (broadcasting information or performing side-effect operations to
refine the representation of the meaning of a text fragment), and suspend

when they have to wait for information from other experts. The
information they send or wait for are either signals relating to the
status of the parsing process (broadcast on a dedicated signal channel) or
concepts that represent the meaning of parts of the linguistic input
(broadcast on a dedicated concept channel). The experts coordinate the

understanding process in turn, eventually converging towards a conceptual
structure that represents the meaning of a text fragment.

Although the model inspired several researchers, it has received
little attention in the linguistic community (but see Berwick 1983) and
has been considered as "an interesting rarity"™. Moreover, the original
researchers have abandoned the model in favor of the connectionist
approach mentioned above. Yet, the original model still has some
interesting features that are worthy of further consideration; on the
other hand, both for linguistic and for computational reasons, some

drastic revisions are needed.

3. From WEP to PEP

In general, theidea of parallel interacting processes is a very
attractive one if one wants a flexible parser capable of using any type of
information at any moment it needs it. This basic principle of WEP has
been retained for PEP. Yet, although the design of the system seemed to
lend itself easily to a parallelimplementation, linguistic and
computational flaw: in the model have made drastic revisions necessary

before this could actually be done.

3.1 True parallelism

Although WEP claimed to be "potentially parallel™, it heavily (and
implicitly) relied on sequentiality to make its principles work.
Especially for the restarting of suspended experts, a last-in first-out
regime (stack) took care of contention for messages: the expert that
placed an expectation for a message last, mostly got it first. Also, to
avoid complications in expert communication, no new experts were
initialized before the gueue of ready-to-run experts was empty. The
adherence to this sequentialization, not to mention the side-effects
involved, obviously made WEP's claim of being “"potentially parallel™
invalid.

In a truly parallel environment, sequentiality can no longer be
relied on. PEP uses parallelism whenever possible: for the execution of
expert code AND for initializing new experts (initializing all of them as
soon as they are read and morphologically analyzed). In order to
realize this, the most important departure from the original model is that
experts are no longer only associated with words (the only Ilinguistic
entities acknowledged by WEP). We will now discuss what experts are
associated with, and how the new view of experts leads to clearer and more
explicit concepts of waiting and communicating in a parallel environment.

-311- Intemational Parsing Workshop 89

3.2 Word-Expert* vcriua Concept-Experts at different level*

A major item of criticism uttered against WEP has been that it
considers the word as the only entity to be turned into an expert process.
Linguistically speaking, the existence of larger constituents is
undeniable and must be taken into account, whatever model one advocates.
From the computational viewpoint, squeezing all interactions into words
makes it almost impossible to figure out what is going on in the overall
parsing process (This non-transparency is one of the reasons why
fully-integrated interactive models are not so popular). Words have to
decide on everything, from morphological issues to pragmatic issues, with

jammed communication channels as a result.
In PEP, experts are associated with concepts rather than with words.

It is very natural to do so: words are only used to evoke the concepts
that constitute the meaning of a fragment of text. Still, concepts
have a concrete link to words and can be regarded as being associated with
the group of words that evokes them. E.g. in "the young girl™ three
concepts can be discovered, associated with the basic word-groups “the",
“"young" and "girl". At a higher level a compound concept constituting .the
meaning of the entire construct "the young girl™ is invoked.

Concretely, in PEP a specific data structure (the expert frame) is
associated with every expert. The hierarchy that originates from the
concepts is reflected by the interconnection of the expert frames. These
are vertically related by level interdependencies, and horizontally by the
relative role the concepts of the frames play in the frame that is being
built out of them one level higher. Besides its level, an expert frame
has three attribute slots: a function attribute (stating what the role
is the expert concept plays at a specific level), a concept attribute
(representing the contents of the expert) and a lexical attribute (simply
corresponding to the group of words associated with the concept). Below,
we will see that this definition of an expert frame is crucial for the

restricted communication protocol among experts.
The "analysis process™ consists of the collection of currently active

experts that try to establish new concepts. I f a new concept can
successfully be formed, the corresponding expert is added to the analysis
process, while the combined concept's experts may die. They pass their
expert frames, and so the contained information, to the new expert, which
will usually incorporate them in its own expert frame. Notice that this
view has interesting software engineering aspects not present in WEP:
by having a leveled approach expert code becomes more local, modular and
adaptable. The dynamic process hierarchy enables the linguist/expert
writer to write generic or prototypical experts that can be parameterized
with the value of the concept they represent (cp. object-oriented
programming)

A final note about the levels. Each level is intended to deal
with a more or less independent part in the derivation and composition of
meaning. However, we leave it wup to the linguists writing the expert

processes to declare (1) what levels they want to consider and (2) what
the appropriate functions are that they want to use at the respective

levels. By combining this flexible filling in of a rigorously defined
model, we force the linguist-user to clearly specify the experts and help
him to Kkeep the experts relatively small (hence, more readable) and to
figure out more easily where things could go wrong m the parsing process.
A possible hierarchy of levels might be: morpheme, word, constituent,
clause, sentence (each level having its own function attributes). In the
somewhat oversimplified example below, three levels will be used (between
brackets: the respective function attributes), viz. word_level
[article;adjective;substantive], constituent_level [action;agent;object],

and sentence level.

-312- Intemational Parsing Workshop '89

3.3 Broadcasting versus Explicit Communication

Experts are the active components of the analysis system. New
concepts come into existence only through their interaction. Since
parallelism was a major goal of the PEP approach, the communication

protocols have been based on explicit identification of the expert frames
involved in some interaction, which allows one to keep communication under
control. Two kinds of communication take place:

@O wMttrlbutm-rmfining:

Experts are allowed to refine the attributes of expert
frames. The attributes are considered to be information that
is accessible by all experts.

(@ attrlbutm-problng:

Basing themselves on the attributes of the probed expert frames,
experts decide which way to go in the analysis process. All attribute
probing is in the choose_alt predicate, that is described in the next
subsection.

3 .4 Suspending/Reetiming :
Explicit Machinery versus Declarative Reading

In the course of the analysis process, experts walk through a
discrimination network, gradually refining and constructing the meaning of
a text fragment. The predicate that allows experts to decide which way

to go in this process on the basis of information they expect to get from
other experts is the choose_alt predicate:

choose_alt(
alt(frame (frame-specification,
attribute_condition),
invoke(expert)),
alt(frame (frame-specification,
attribute_condition) ,
invoice (expert)),

else (invoice (expert))

D

It consists of a number of alternatives and an optional elsative. The
alternatives contain a test, which may fail, suspend or succeed. In the
last case the corresponding expert may be invoked. If tests from several
alternatives succeed,, an arbitrary corresponding expert is invoked,
whereas the others are not further considered (don't-care committed
choice; see also below and Devos 1987, however, for a suggestion of how to
realize non-determinism in view of ambiguity). Only after failure of
all tests is the elsative-expert executed.

Tests consist of a frame-specification and an attribute-condition.
The latter constitutes the actual test on the attribute of the frame
selected by "frame-specification”. This frame can be referred to with

-313- International Parsing Workshop '89

testframe in the corresponding invoked expert. One will already have
noticed that the choose_alt predicate does not contain any explicit
scheduling commands. Indeed, the intention is to entirely mask the
program flow by a declarative reading. However, flow control remains
necessary and it is realized by suspending an expert routine (or a branch
in the choose_alt predicate, since the alternatives in the choose_alt may
be executed in parallel), if it requires information that is not yet
available. Only after this required information is filled in, does the
expert-routine resume. This can cheaply be implemented using
read-only unification (Shapiro 1986). Intuitively, predicatesthat
probe for information suspend, if the variable that supplies this
Information is not yet instantiated.This suspension takes place
during unification of the Flat Concurrent Prolog (FCP) predicate (see
below), into which expert routines are compiled. Resumption occurs
whenever the required variable gets instantiated. Suspension of a
choose_alt branch may take place in the following cases:

(1) I f the search for the testframe requires
information that is not yet available, it simply
suspends. As a result the frame-specification
always leads to the selection of a frame in a
deterministic way. Hence, explicit communication
becomes possible.

(2) The attribute-test suspends until the information to
be tested is available.

There is one other predicate or command that may cause suspension of
an expert, viz. begin_level (a_levelj. The execution of an expert
that specifies begin_level(a_level), is only resumed after all attributes
of incorporated expert frames are specified. This filling in of
attributes takes place between different expert frames on the same level
(intra-level communication). With rigid rules as to which expert fills in
which frame, it is possible to prove that the expert code i3 deadlock
free. These rules will further be referred to as the deadlock avoidance
rules. It suffices e.g. to prove that every frame that i3 at the lowest
level that still contains unfilled frames, will eventually befilled in.

It must then not be difficult to construct a deadlock analyser, that
checks whether the deadlock avoidance rules are violated. This has not
yet been further elaborated.

However, to ensure flexibility (especially from linguistic
considerations) we are forced to allow inter-level communication. e.g.
in sentences as “the little girl loved her toy", where "her™ is level
equivalent to "little™, but anaphorically refers to “"the little girl™,
which will probably be at a higher (hence, different) level than "her™.
In this case deadlock free code is not easy to guarantee, because of the
possibility of circular waiting of experts for one another. It is our
hope that we can also incorporate restricted and well-specified use of
this inter-level communication in the deadlock avoidancy rules.

The system as yet designed, implements a don't-care committed-choice
between the alternatives of a choose_alt predicate. This means that an
arbitrary alternative that succeeds, will be chosen to determine the
expert's behaviour. We are well aware of the fact that don't-care
committed-choice is not always what one wants in Al applications. We
merely chose this (easy) option here in order not to burden the design and
implementation with one more serious problem. Two alternatives to be
explored in the future are the following.

The first is intermediate between don't-care committed-choice and
full non-determinism. To each alternative in the choose_alt command a
priority 1is assigned. The alternatives are then tried out by descending
priority, allowing the more likely ones to succeed first. (These
priorities will often reflect frequency of occurrence of specific

-314-

Intemational Parsing Workshop '89

linguistic

structures.)

A prioritizing approach like this one will
however require more synchronisation among the alternatives of the
choose_alt to ensure a unique semantics of the command.

The second is full non-determinism. No priorities are assigned to
alternatives, and the system is capable of undoing a wrong choice during
the analysis process. It can go back to a choice point and try out
another alternative whose test succeeds. A (costly) implementation
of this strategy should be based on Concurrent Prolog code (Shapiro 1986)
that contains a copy of the global environment for each alternative in the
choose alt command. This Concurrent Prolog code would then have to be
flattened to FCP (Codish & Shapiro 1985).

3.5 An Exampla Analysis

Below we present the code of some sample experts that allow the
analysis of thesentence ™"the little girl eats the apple™. The example is
simplified, butillustrates well the crucial elements of PEP. First the
appropriate levels and functions are declared. Then follows the code of
the actual experts. Remember that expframe refers to the frame that is
associated with the expert and testframe refers to the frame that was
referred to in the alternative of the preceding choose_alt command,
“"begin frame™ sets the appropriate level and "refine_function™ and
"refine_concept™ do the filling in ofthe attributes of the specified
frame. The lexical attribute is automatically filled in when beginning
the frame. The example restricts itself to choose_alt commands that
only require intra—evel commur. _cation. When the sentence is read, the
corresponding experts are initialized and start to run in parallel. The
rest of the code is self-explanatory.
d«clic<(laval(

word_l«v«l
(function(articla,adjactiva,substantive 1),
conicituant_Jlaval
(function ifaction,agant,objact]),
»antanca_iavai
(functionD)
D-
tha :-
bagin_frama(word_laval),
rafina_function (axpfrajaa, “articla®).
rafina conctpt (axpfra»a, kind(*d*fining*)),
rafina_concapt (a*pfra»a, vaiua(*dafinad*)).
littia :-
bagin_frai*a <word_laval) ,
rafina function(axpframa, -adjactivar®),
rafina_concapt(axpframa, kind (*adjactival*)).
refin«_conc»pt (axpframa, vaiua (“young, »i»all*)).
girl :-
bagin_frama (*»ord_l«val) ,
rafina function(axpfrarea. “juitantiv*"),
rafina concapt(axpfraraa, kind('parson*)),
rafina_concapt(axpframa, vaiua(*fanaia, chiid_or_raaidan*)),
choo»a_alt
([ai t(Frama(»inu»(1l).function(aquai(“articla~))).
-315-

Intemational Parsing Workshop '89

invoke(article_incorporation)),
elt(frame(minus (1), function(equal(“adjective”))),
invoke(adjectiv*_incorporation)),

else (invoice (ho_incorporation))l) .
apple analogous to the code for girl.

adjective_incorporation =—
incorporate(testframe),
choose_alt
([alt(frame(minus(1),function(equal(Tarticle™))),
invoke(@rticle_incorporation)),

else(invoke(no_incorporation)) 1.

article_incorporation

incorporate(test frame),

begin frarae (constituent_level),
refin*_conc*pt(*xpframe, kind("unused™)),

refine_concept(expframe, value("unused™)).

no_incorporation
b*gin_fram*(constituent_level),
refine_concept (expframe, kind ("unused")),

refine_concept(expframe, value("unused")).

eats begin_frane(constltuent_level) ,
refine_function(expframe, Taction®),
refine_concept(expfrane, kind ("ingest™)),
refine_concept(expframe, value("Ingest_food™)),
chooie_alt
([alt(frame(plus(3),concept(view(“eatable*))),

invoke(eat_something)),

eat_soi»*thing -
refine_function (test fraja*, “object”),
incorporate (tastfraja*) ,
choos*_alt
((alt(fraa*(minus(l),concept(view(parson¥*))),
invoke(to**on*_*ats_saa*thing)),

B P GO el » .

scxa*an*_*ats_ao«ething
r*fin*_function (t*stfram*. ~agent~™),
incorporate (tastfrajaa) ,
b«gin_fraa*(s«nt*nc*_level),

show solution.

-316- Intemational Parsing Workshop '89

4. A Parallel Implementation

In the last section of this paper the implementation (in a logic
programming language) of all aspects of PEP discussed so far will receive
a closer look. For this Implementation Logix has been wused, a Flat
Concurrent Prolog environment (Silverman et al. 1986).

4.1 General Model Organization

The prototype realization of the PEP model allowing for correct
analysis of very simple sentences (such as "The man eats™, "A man eats",
“"Man eats™) consists of an expert language (EL) to be used by the linguist
when writing his experts, a precompiler that transforms the experts to FCP
code and the Logix FCP compiler/emulator, the programming#environment.

Linguists are offered the EL, which only contains predicates at a high
level of abstraction. They may further tune the expert levels discussed
earlier and the function attributes they will be using at each level to
their own needs. They are only allowed to use the EL predicates according
to their own specification of levels and function attributes. The EL is
then precompiled to FCP. The main reason for the approach of
precompiling is that flattening techniques have to be used on the
predicates. These techniques are the domain of computer scientists and
the linguist should not be bothered with them. (Precompiling also offers
important additional advantages such as syntax checking, checking of
potential deadlock, etc.; these features are still under development).

4.2 Data-Structures:
Frame Interconnection and Blackboard Information

The lexical-morphological analyzer schedules and invokes the
experts corresponding to the elementary lexical units and outputs a
blackboard, i.e. a matrix with slots whose columns correspond to those
units and whose rows correspond to a level. Each expert has one expert
frame associated with it; this expert frame fills one slot of the
blackboard. In the beginning of the analysis process all frames and the
blackboard contain uninstantiated slots. Experts gradually
instantiate the slots. Referring to another expert's expert frame
requires walking to it over the blackboard. The walk is defined in a
unique way. All slots on the path should be instantiated, otherwise the
walk suspends and waits for the instantiation. This is elegantly
implemented using the read-only unification of the parallel Prolog
versions. Slots that will never be of any use any more, are instantiated

to dummy constants in order not to indefinitely block suspended walks.

-317- International Parsing Workshop '89

5. Conclusion* and further r«««arch

In this paper a further development of the procedural view of

natural language analysis (NLU) as proposed by Small's Word Expert Parser
has been presented. The Parallel Expert Parser tries to present a truly
distributed and parallel interactive model of NLU with clearly defined
experts on different levels, hierarchically conceived expert frames and

rigidly restricted communication protocols.
Besides further work on the implementation and writing/testing

more complex experts, the necessary model of knowledge (concept)
representation that has to complete the framework is a major issue for
further research. As mentioned above, Hahn (1987) has already worked on
this matter, introducing generic, prototypical experts. This is not just

a knowledge representation matter, but also one of integrating parallel
Prolog with an object-oriented framework (Bourgois, forthcoming).

REFERENCES

ADRIAENS, G. (1986a) - Word Expert Parsing Revised and Applied to
Dutch. In Proceedings of the 7th ECAI (Brighton, UK), Volume I,
222-235 .

ADRIAENS, G. (1986b) - Process Linguistics: The Theory and
Practice of a Cognitive-Scientific Approach to Natural Language
Understanding. Phd. thesis, Depts of Linguistics and Computer Science,
University of.Leuven, Belgium.

ADRIAENS, G. (1987) - A Critical Description of the Coroutine
Regime Used in the Word Expert Parser. Computer Science Thesis, Dept of
Computer Science, University of Leuven, Belgium.

ADRIAENS, G. & U. HAHN (eda, forthcoming) - Parallel Models of
Natural Language Computation. Ablex, New Jersey.

ALTMANN, G. (1988) - Ambiguitiy, Parsing Strategies, and
Computational Models. In Language and Cognitive Processes 3 (2),
73-97.

ALTMANN,- G. & M.STEEDMAN (1988) - Interaction with context
during human sentence processing. In Cognition 30, 191-238.

BERWICK. R.C. (1983) - Transformational Grammar and A rtificial
Intelligence: a Contemporary View. In Cognition and Brain Theory 6(4),
383-416.

BOURGOIS, M. (forthcoming) - The Parallel Expert Parser comes of
age. Explorations in the integration of parallel Prolog and
Object-oriented Knowledge Representation for Natural Language
Understanding. Al Thesis, Department of Computer Science, University of

Leuven, Belgium.
BRISCOE, E.J. (1987) - Modelling Human Speech Comprehension: A

Computational Approach. Ellis Horwood, Chichester UK.

CODISH, M. 6 SHAPIRO, E. (1986) - Compiling OR-parallelism into
AND-parallelism. Technical Report CS85-18, Department of Applied
Mathematics. The Weizmann Institute of Science, Israel.

COTTRELL, G.M. (1985) - A Connectionist Approach to Word Sense
Disambiguation. University of Rochester Computer Science Phd (TR-154).

Rochester, New York.

-318- International Parsing Workshop 89

COTTRELL, G.W. & S.L. SMALL (1983) - A Connectionist Scheme

for Modelling Word Sense Disambiguation. In Cognition and Brain
Theory 6 (1), 89-120.

DEVOS, M. (1987) - The Parallel Expert Parser. Realization of a
Parallel and Distributed System for Natural Language Analysis |In Logic
Programming Languages. Engineer's Thesis, Department of Computer Science,
University of Leuven, Belgium (in Dutch).

FELDMAN, J.A.& D.H. BALLARD (1982) - Connectionist Models and
Their Properties. In Cognitive Science 6, 205-254.

GRANGER, R.H., K.P. EISELT 6 J.K. HOLBROOK (1986) - Parsing
with Parallelism: A Spreading-Activation Model of Inference Processing
During Text Understanding.

HAHN, U. (1986) - A Generalized Word Expert Model of Lexically
Distributed Text Parsing. In Proceedings of the 7th ECAI (Brighton, UK),
Volume I, 203-211.

HAHN, u. (1987) - Lexikalisch verteiltes Text-Parsing. Eine
objekt-orientierte Spezifikation eines Wortexpertensystems auf der
Grundlage des Aktorenmodells. University of Konstanz Department of
Information Science PhD Thesis.

HILLIS, D. (1986) - The Connection Machine. MIT Press, Cambridge
M ass.

HIRAKAHA, H. (1983) - Chart Parsing in Concurrent Prolog.
Technical Report of the ICOT Research Center (TR-008). Institute for New
Generation Computer Technology, Tokyo.

HIRST, G. (1983) - A Foundation for Semantic Interpretation. In
Proceedings of the 21st ACL (Cambridge, Mass), 64-73.

KOWALIK, J.S. (s<1) (1988) - Parallel Computation and Computers
for Artificial Intelligence. Kluwer, Dordrecht The Netherlands.

MATSOMOTO, Y. (1987) - A Parallel Parsing System for Natural
Language Analysis. In New Generation Computing 5 (1987), 63-78.

McClelland, j. & RUMELHART D.E. (1986) - Parallel Distributed
Processing. MIT Press, Cambridge, Mass.

POLLACK, J. & D. WALTZ (1985) - Massively Parallel Parsing:

A Strongly Interactive Model of Natural Language Interpretation. In
Cognitive Science 9, 51-74.

SILVERMAN, W. ml. (1986) - The Logix System User Manual -
Version 1.21. Technical Report CS-21 , Department of Computer Science.
The Welzmann Institute of Science, Rehovot 76100, Israel.

SHAPIRO, E. (1986) - Concurrent Prolog: A ProgressReport.
Fundamentals of Artificial Intelligence, W. Bibel & Ph. Jorrand.
Lecture Notes in Computer Science, Springer-Verlag, Berlin.

SMALL, S.L. (1980) - Word Expert Parsing: a Theory of Distributed
Word-Based Natural Language Understanding. Computer Science Technical
Report Series. University of Maryland Phd.

VANLEHN, K. (1984) - A Critique of the Connectionist Hypothesis
that Recognition Uses Templates, and not Rules. In Proceedings of the 6th
Annual Conference of the Cognitive Science Society (Boulder, Colorado),
74-80.

319- International Parsing Workshop '89

