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Abstract

This paper describes a crowdsourcing experiment on the annotation of plot-like structures in En-
glish news articles. The CrowdTruth methodology and metrics have been applied to select valid
annotations from the crowd. We further run an in-depth analysis of the annotated data by compar-
ing it with available expert data. Our results show a valuable use of crowdsourcing annotations
for such complex semantic tasks, and promote a new annotation approach that combines crowd
and experts.

1 Introduction

Causal relations are a pervasive phenomenon in human activities, including narrative production. Causal-
ity is actually the main component of narratives, regardless of the mediums (novels, news articles, com-
ments, micro-blogs, pictures, among others) and their fictional status (fictional vs. non-fictional nar-
ratives). In a narrative text, causal connections between events allow the story to progress, the actors
to participate, and eventually reach a conclusion. Causality is responsible for logically connecting the
events together in a meaningful way.

If we shift perspective, and look at narratives from the point of view of the producers rather than
their structural properties, it is easy to observe how humans impose causal, or explanatory, relations
among events that they perceive or are involved into. Humans have a great appetite for information
and are in constant need to find explanations for the things they observe. We search the present for
cues and evidence, merge and resolve information with what we already known (i.e., the past), and use
this information to (try to) predict the future and make decisions. Explanatory relations and narrative
strategies are one of the major cognitive tools we use to observe the world and, most importantly, to
interpret it (Boyd, 2009; Gottschall, 2012). When reporting on an event in the world, or telling someone
a personal experience, we do not merely describe what happens, i.e., we do not just list events in the
order of occurrence !, but we connect them in a set of coherent patterns, or, in other words, we give rise
to plot structures (Bal, 1997). Plot structures express a form of reasoning about causal relations between
events and states composing the narrative (Lehnert, 1981; Goyal et al., 2010; Mani, 2012).

The current stream of data and information is growing everyday and its size and complexity is such
that humans may suffer from “information overload”. To minimise such a problem, intelligent content
management systems have been developed and they became more and more popular and used. Different
methods and approaches have been developed to provide users with personalised and relevant informa-
tion. However, most of this information is given in the form of full text documents that require the users
to read them to identify (i.e., extract) the information. Automatic processing would be beneficial, es-
pecially if the results are presented as structured data based on narrative strategies. We follow, in this
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"For a comparison, think about the Ancient Roman tradition of the Annales, concise historical records merely reporting
events chronologically.
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respect, the proposal of automatically generating storylines of events (Vossen et al., 2015; Caselli and
Vossen, 2016).

This paper reports on a crowdsourcing experiment on the annotation of causal relations between pairs
of events in news data.

The main contributions of this work are:

e an analysis of the crowdsourced data, in terms of parameters that may affect the annotation quality,
time, and evaluation of the data using the CrowdTruth methodology (Aroyo and Welty, 2014; Aroyo
and Welty, 2015);

e a comparison between experts and crowdsourced annotated data with respect to a publicly available
reference benchmark corpus for storyline evaluation, the Event StoryLine Corpus (ESC) (Caselli
and Vossen, 2017);

o the release of an enhanced version of the Event Storyline Corpus (ESC v1.2).

The remainder of the paper is organised as follows: Section 2 provides an overview of related work on
the annotation of causal relations in different datasets, highlighting differences and commonalities with
our contribution. Section 3 describes the dataset and the crowdsourcing experiment settings based on
the CrowdTruth metrics. Section 4 reports on an in-depth analysis of the crowd data and its comparison
with existing expert annotated data. Finally, Section 5 summarises our findings and suggests directions
for future work.

2 Related Work

Causality can be broadly defined as the knowledge, or way of knowing, if an event, or a state of affairs, is
responsible for causing another one. To avoid the intrinsic circularity of this definition, we can rephrase
it in more generic terms such that causality establishes a connection between two processes, events, or
states, whereby the first is (partly) responsible for the occurrence, or holding as true, of the second, and
the second is (partly) dependent on the first.

Causality has been subject of debates in different scientific communities. One of the most relevant
aspect of this debate is the lack of a homogeneous theory of causality, and, most importantly, the avail-
ability of a plurality of perspectives on it. Providing an extensive and critical summary of this debate is
out of the scope of this work, but, we will review relevant works in the areas of Linguistics and Natural
Language Processing that contributed to shape this notion, its annotation in actual natural language data,
and the development of automatic systems. We restrict this literature review to approaches in the news
domain.

One of the distinguishing properties of causality in natural language, shared with other semantic rela-
tions such as meronymy and mereology, is granularity (Hobbs, 1985; Mulkar-Mehta et al., 2011). This
allows humans to interactively play between coarse-grained and fine-grained levels of causality. Further
studies (Talmy, 1976; Comrie, 1981; Girju and Moldovan, 2002) have investigated the variety of lexico
and semantic constructions that can express causation in a natural language. At least for English, as well
as other Indo-European languages, it is possible to differentiate the set of causative constructions into
two big groups: i.) those expressing causality via explicit patterns; and ii.) those using implicit patterns.
The difference between these two ways of expressing causality relies in the semantic transparency of the
causative constructions. Explicit causative constructions are characterised by the presence of keywords
such as causal connectives, adverbs or adjectives (e.g. because (of), with the results that, since, so), cau-
sation verbs (e.g. cause, bring about, kill, blacken), and conditional constructions, among others. On the
other hand, implicit causation can be expressed by complex nominals (e.g. malariay p1 mosquitoesy pa,
where NP2 is interpreted as causing NP1 2), verbs of implicit causation, and discourse structure.

The annotation of expressions of causality, or causal language, has received lots of attention which
resulted in the realisation of different annotation schemes and initiatives. Computational lexicons, such

2This example is extracted from (Girju and Moldovan, 2002).
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as WordNet (Miller, 1995), VerbNet (Schuler, 2005), PropBank (Kingsbury and Palmer, 2002), and
FrameNet (Baker et al., 1998), were the first to encode this information at the level of lexical items
or senses. For instance, WordNet encodes two relations, such as causes and entailments. VerbNet and
PropBank include causative verbs. FrameNet represents causality through a variety of frames (e.g. CAU-
SATION, THWARTING) and roles (e.g. PURPOSE).

The Penn Discourse Treebank (PDTB) (Prasad et al., 2007) models causality as inference of discourse
relations. Causality is a subclass of the contingency relation hierarchy, together with enablement and
condition. The definition of causality we have used in the crowdsourcing experiments is strictly con-
nected to that of contingency of the PDTB. However, we annotate relations between pairs of events
rather than between discourse units.

Other initiatives concern three different annotation projects: CaTeRS (Mostafazadeh et al., 2016b),
CATENA (Mirza and Tonelli, 2016), and BeCauSE 2.0 (Dunietz et al., 2017). The first two projects,
based on the TimeML annotation scheme (Pustejovsky et al., 2003), annotate causality between pairs
of events. CaTeRs adopts a commonsense reasoning perspective, rather than limiting the annotation
to the presence of specific linguistic markers. The scheme adopts three values (cause, enable, and
prevent (Wolff, 2007)) to be annotated as “true” with respect to the actual context of occurrence of
the event pairs. The authors report a global Fleiss’s « score on all annotated relations (including also
temporal relations) of x = 0.49 without closure, and x = 0.51 with closure. CATENA adopts a linguistic
approach. The annotation of a causal relation is allowed only between pairs of events in presence of a
non-discontinuous causal connective, i.e., limited to explicit relations. Finally, BeCauSE still addresses
the annotation in terms of a linguistic approach, requiring the presence of a causal connective for the
annotation to take place. The main difference with respect to CATENA and other initiatives concerns the
fact that it annotates all constructions that express causality rather than restricting to a particular realisa-
tion (e.g. discourse relations, or TimeML events). The approach we have adopted in our crowdsourcing
experiments follows CaTeRs as we have adopted a commonsense reasoning perspective. However, we
have simplified the granularity of the values to one type only, cause, finding the three-way classification
too fine grained for the crowd.

Other works have addressed causality in the broader context of automatically learning narrative struc-
tures, or plot-like structures, using unsupervised methods. A notable work in this area is the Narrative
Event Chains (Chambers and Jurafsky, 2008). Narrative chains are partially ordered sequences of events
related to a common protagonist, i.e., sequences of verbs sharing a common actor, identified through
typed dependencies, obtained from a large corpus collection. Narrative chains do not model causality
directly, but they assume that narratives, such as news articles, are coherent structures. This means that if
a sequence of verbs shares a coreferring argument, then these verbs must be connected by the discourse
structure. One of the main criticism of this approach is that the chains express more co-occurrence re-
lations rather than actual narrative relations, and, in some cases, may result in non-coherent chains of
events.

Crowdsourcing of causal relations has received less attention than other natural language processing
tasks, such as event extraction and factuality assessment (Lee et al., 2015), temporal information ex-
traction (Caselli et al., 2016; Snow et al., 2008), word sense disambiguation (Jurgens, 2013; Akkaya et
al., 2010), among others. To study narratives, (Hu and Broniatowski, 2017) proposed a crowdsourcing
approach to represent a text, which is split into smaller text snippets, as a causal network. The crowd
workers were asked to draw links between text snippets that are related through a causal relation, in an
external tool. In a similar way, creative writing crowdsourcing tasks have been developed (Mostafazadeh
etal., 2016a) to build a corpus of commonsense stories containing causal and temporal relations between
everyday events. Other initiatives have annotated causal relations between propositions (Sukhareva et
al., 2016), among other context-sensitive semantic verb relations, i.e., co-reference, temporal, entail-
ment. The crowd workers had an observed agreement of 71.8%, where Krippendorff’s o was equal to
0.32 on a very limited set (i.e., there were only between 2%-6% of causal relations in the entire dataset).
In this work, we specifically focus on identifying loose causal relations between events in a large variety
of topics using simplified crowdsourcing instructions.
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3 Crowdsourcing Causal Relations between Events

As already stated, we follow a commonsense reasoning approach to annotate causality. Furthermore, our
goal is to approximate the annotation of plot-like structures rather than strict causal relations between
pairs of linguistic items. In the rest of the paper, we use causal relations and plot-like relations as
synonym terms. Thus, causality is naively used to refer to the broader notion of contingent relations.
This choice is also dictated by a desire to be as much ecological as possible with respect to the crowd in
the process of data collection. In our vision, ecology is declined in two ways: i.) avoid to bias the crowd
with lengthy and complex task instructions (including examples); ii.) collect a diversity of judgements
assuming multi-faceted versions of ground truth data, i.e., there is no such a thing as absolute right or
wrong, but varieties of truths. In the remainder of this section, we describe the dataset (Section 3.1), the
crowdsourcing annotation template (Section 3.2), the quality metrics used to evaluate the crowdsourced
data (Section 3.3) and the crowdsourcing experiments performed (Section 3.4). The data and the crowd
annotations are publicly available. 3

3.1 Dataset

The experimental dataset covers 22 topics from the Event StoryLine Corpus v1.0 (ESC v1.0) (Caselli
and Vossen, 2017). The ESC corpus contains expert annotations that cover a high range of entities and
relations such as: actors, locations, temporal expressions, events, temporal relations, event coreference
relations, and plot-like relations between pairs of events. The plot relations in the ESC data are marked
with a <PLOT_LINK>> tag, and broadly correspond to contingent relations between pairs of events. The
annotation of these links is based on relatively simple annotation guidelines, instructing the annotators in
the identification of the eligible pairs of events and associated relation (i.e., relation directionality). The
inter-annotator agreement for <PLOT_LINK> has been calculated using the Dice coefficient and equals
0.638.

ESC consists of 22 topics, for a total of 281 news articles. We extracted 1,204 annotated sentences
containing at least two expert annotated events. Following the approach of the ESC corpus, we have
excluded events belonging to the following classes from the event pairs: ASPECTUAL, REPORTING,
CAUSATIVE, and GENERIC. These classes actually represent sets of event mentions which cannot give
rise to a plot-like structure, or a contingent relation. For instance, on the one hand, in the case of a
REPORTING event (e.g. say, report), a plot-like relation holds with respect to the actual content of what
is “reported” rather than between the marker of the presence of a reporting event. On the other hand,
CAUSATIVE events (e.g. cause, sparkle, trigger) have been excluded as they are interpreted as explicit
markers of a causal relation. The actual plot relation holds between their arguments. An overview of the
dataset is shown in Table 1. The ESC dataset contains 2,290 manually annotated <PLOT_LINK> rela-
tions between event pairs. This set of relations is then expanded to 5,684 pairs when using coreference
relations. As for the manually annotated pairs, only 1,571 out of 2,290 (68.6%) occur in the same sen-
tence. In the 1,204 sentences that we selected in our experiments, there are only 1,540 expert annotated
event pairs, that are further used in our analysis (Section 4).

Table 1: Dataset Overview

#Event # Expert Annotation # Expert Pairs ESC v1.0
Pairs ESCv1.0 in Our Experiments
22 281 1,204 7,778 1,571 1,540

#Topics #Doc #Sent

3.2 Crowdsourcing Annotation Template

We ran the crowdsourcing experiments on the Figure Eight* platform, formerly known as CrowdFlower.
Figure 1 shows the annotation template used to gather crowd annotations on causal relations between

*https://github.com/CrowdTruth/Crowdsourcing-StoryLines
4https ://www.figure-eight.com
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event pairs. The annotation template uses simplified instructions that can all be seen in Figure 1, i.e., we
did not provide detailed instructions or annotation guidelines, nor examples. In short, the workers were
given a sentence and a list of expressions to validate. An expression consists of one of the statements
FEvent 4 causes Eventg or Eventy is caused by Fventp, where Fventys (E4) and Eventp
(E'p) appear in the sentence. For example, the sentence shown in Figure 1 contains three events: warns,
bombs and war. Taking all possible combinations of these three events, the crowd is asked to validate the
following expressions: warns causes bombs, warns 1s caused by bombs, warns causes war,
warns is caused by war, bombs causes war, bombs is caused by war. To help workers
identify the position of the two events composing each expression in the sentence, the events are high-
lighted in the sentence when hovering over the given expression. For instance, in Figure 1 we hover over
the expression warns is caused by bombs (grey background), and therefore, the events warns and
bombs are highlighted in blue in the sentence. The workers were allowed to choose as many expressions
as they considered valid. In case no valid expression was found for the given sentence, the crowd workers
were asked to motivate their answer in a text field.

ﬂ Read the following text:

South Sudan WARNS of war after Sudan BOMBS refugee camp

e) Select all the statements that you think are expressed in this sentence between the two highlighted terms:
ent to see which are the terms we are interested in.

nts that are EXPLICITLY EXPRESSED IN THIS SENTENCE.

o Hoverover each stai

o Choose only the

WARNS caused BOMBS I:‘ WARNS is caused by BOMBS
WARNS caused WAR WARNS is caused by WAR
BOMBS caused WAR BOMBS is caused by WAR

There is no valid expression above

Figure 1: Screenshot of the Crowdsourcing Template to Annotate Causal Relations between Events.

3.3 Crowdsourcing Quality Metrics

The task of extracting causal relations between events is prone to disagreement, diverse perspectives,
and interpretations due to: i.) the inherent ambiguity of natural language; and ii.) the difficult nature of
dealing with events and causality. To address and consider these aspects, we chose to evaluate the quality
of the crowdsourced data by using the assumption behind the CrowdTruth disagreement-aware method-
ology (Aroyo and Welty, 2014; Aroyo and Welty, 2015): ambiguity is reflected in all crowdsourcing
components (i.e., units, workers, annotations) and the ambiguity of each component influences the other
components. For our usecase, a unit represents a sentence, the workers are the contributors from the
Figure Eight platform, and the annotations are statements of type F4 causes/is caused by Ep,
where £ 4 and E'p appear in the sentence, and the value “NONE”, from which the workers can choose,
as described in Section 3.2. A worker judgement is composed of such validated statements.

In this work, we followed and applied the CrowdTruth methodology and metrics as suggested in (Du-
mitrache et al., 2018). For our use case, the identification of causal relations between events, each
worker’s judgement is translated into a binary worker vector, WorkerV ec, which has a length equal to
n+1, where n is the total number of causal relation statements to choose from and the last component
refers to the value “NONE”. Each causal relation component that was picked by the worker gets a value
of 1, and 0 otherwise. The WorkerVec of all workers that annotated the same sentence s are summed
up to compute the sentence vector, SentVec. These two vectors are then used to compute the quality
score for each sentence, worker and causal relation, in particular:

e unit quality score (UQS): represents the degree of agreement among the workers that annotated the
sentence s, i.e., the lower the score, the less clear the sentence. UQ.S is computed as the average
cosine similarity between all WorkerV ec for s, weighted by the worker quality (W Q.5).
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e worker quality (W Q5S): represents the degree of a worker’s agreement with the rest of the workers
on the specific task. WQ.S of worker ¢ is computed as the product of 2 cosine similarity metrics -
the worker-worker agreement W W A (a pair-wise agreement between every two workers) and the
worker-sentence agreement WS A (the agreement of a worker with all the workers that annotated
the same sentence); the two worker metrics are weighted by the unit quality score UQS; thus, the
annotations of the workers with lower quality score will weight less in the final output.

e sentence - causal relation score (SCausal Rel): represents the likelihood of the causal relation r
to be expressed in sentence s. SCausal Rel is computed as the ratio of the number of workers that
picked the causal relation r over all workers that annotated the sentence, weighted by WQS.

Using these preliminaries, the CrowdTruth metrics model the inter-dependency between the three
main components of the crowdsourcing experiments - units (sentences), workers and causal relation
statements. The aforementioned quality metrics are computed in a dynamic fashion, iteratively, until the
results are stable. As a result of this process, the final crowd annotations, the SCausal Rel, are weighted
by the quality of the workers that annotated the given unit. The reason for choosing the CrowdTruth
approach to weight the annotations of the workers rather than those provided by the platform (in our case
Figure FEight) is that the trust values of the crowdsourcing platform does not account for the ambiguity
of the data that is annotated.

3.4 Crowdsourcing Data Collection

In total, we ran two crowdsourcing experiments, as show in Table 2 - a pilot experiment
Trial EventPairs on 4 topics and a main experiment 6 FventPairs on all 22 topics. We ran the
pilot experiment, T'rial EFvent Pairs, to identify the optimal settings in terms of number of event pairs
to be shown at the same time to the workers. Figure 2 shows the distribution of UQS for each set of
sentences containing between [1, 28] event pairs. Besides the distribution of UQ).S, the plot also shows
the mean U Q.S value, the median UQS value and the number of sentences containing the given number
of event pairs. There is a clear pattern between the increase of event pairs (X axis) and the decrease
of the UQS. This suggests that the amount of event pairs influences the overall quality of the sentences
and consequently, the performance of the workers on identifying causal relations between events. Given
that for sentences containing more than 6 event pairs the mean U(Q)S drops below 0.4 in most cases, we
identified 6 event pairs as the optimal number. Therefore, in the main experiment (6 EventPasirs), the
crowd needs to validate a maximum of 12 causal relation statements (2 for each pair of events).

Each unit, which is composed of a sentence and a set of causal relation statements, was annotated
by 15 workers and each annotation was paid 2¢. The workers were categorized as level 2 accord-
ing to Figure Eight, i.e., a smaller group of more experienced, higher accuracy contributors. For the
Trial EventPairs experiment we gathered 3,360 annotations from a total of 157 unique workers and
for the 6 Event Pairs experiment we gathered 27,675 annotations from a total of 697 unique workers.
We split our input units in batches of around 50 units, i.e., we were publishing jobs of around 50 units at
a time. In each job, the workers were allowed to annotate as many units as they wanted, with a maximum
limit of 20 units per job. In total, in the Trail Event Pairs experiment the workers annotated between 1
and 75 units, with an average of 21 units per worker and in the 6 Event Pairs experiments, the workers
annotated between 1 and 457 units, with an average of 40 units per worker. The total cost of the two
experiments was 756%.

4 A Comparison with Experts

We ran a set of comparative analyses between the data collected through this crowdsourcing experiment
and the annotations of <PLOT_LINK> in the ESC v1.0 dataset. Given that the CrowdTruth metrics
allow us to estimate the quality of the annotated data, expressed by the SCausalRel score, we can use the
different thresholds as corresponding to different qualities of the crowd annotated data. The usefulness
of a comparison with expert data is in this case two-folded: i.) it provides additional evaluation of the
crowd data which complements the CrowdTruth measures; ii.) it allows us to gain more insights on the
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Table 2: Overview of crowdsourcing experiments to derive optimal annotation settings and template

Input Data Crowdsourcing Template
. . #Event . Max # of
Type Exp. #Topics #Sent. #Units Pairs Annotations Annotations
FE 4 causes E'p
Pilot TrialEventPairs 4 217 224 1,477 FE 4 caused by E'p 57
NONE
FE 4 causes E'p
Main 6EventPairs 22 1,204 1,845 7,778 FE 4 caused by E'p 13
NONE
1.0 e e e # of Units °

= Median UQS Value} so
A Mean UQS Value

-

o

8
R

uQs
Number of Units

0.2 -
L]

0.0 'y 'y 'y PRI )

L 'y
» % 9 0 A OMONMIIDIPAIAD
number of event pairs

Figure 2: Distribution of UQ.S for any number of event pairs in the T'rial Fvent Pairs pilot experiment.

differences between experts and crowd (in annotation behaviour), and to identify a reliability threshold
for directly using the crowdsourced data as Gold Standard, or for integrating them with expert data.

The analysis was conducted as follows: first, we excluded all units that were marked as “NONE”,
regardless of the SCausalRel score. This allows us to access a large set of events pairs. In case there is
actually no relation among the pairs, the SCausalRel score will be either very low or equal to zero, if
no worker has annotated it. The SCausalRel score ranges between 0 and 1, where 1 expresses perfect
agreement among all crowd annotators. After this, we have generated different thresholds, starting from
1 and lowering the score by a 0.1 point at a time, up to 0.5, a value signalling a 50% agreement among all
workers. In this way, we can compare crowd data of different agreement with the expert data. We have
used standard Precision (P), Recall (R), and F1-score (F1), assuming the expert data as a Gold Standard.

Table 3: Comparing Experts and Crowd: Causal Relation Identification

Threshold P R F1 # Crowd Relations
1.0 0.923 0.007 0.015 13
0.9 0.764 0.086 0.155 174
0.8 0.670 0.191 0.297 440
0.7 0.547 0.298 0.386 838
0.6 0424 0424 0424 1,540
0.5 0.316 0.546 0.401 2,654

Table 3 illustrates the results of the overall evaluation, i.e., the ability of the crowd to identify both
the event pairs that stand in a causal relation and the directionality of the causal relation. As the figures
show, there is a clear pattern: the lower the threshold, the higher the number of relations annotated by the
crowd. Lower thresholds actually correspond to higher disagreement among the workers, pointing out
differences in the interpretation of the sentences, as well as signalling the complexity of the task. In this
case, the differences may concern the actual pair, the relation directionality, or both. We can also observe
that lower thresholds correspond to an improvement of Recall (i.e. higher matching with experts), at the
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Table 4: Comparing Experts and Crowd: Event Pairs Detection (only)

Threshold P R F1  #Crowd Pairs #FPs # Unique FPs %Correct FP
1.0 0.923 0.007 0.015 13 1 1 100%
0.9 0.787 0.088 0.159 174 37 36 77.77%
0.8 0.695 0.198 0.309 440 134 97 82.75%
0.7 0.586 0.314 0.409 827 342 208 63.38 %
0.6 0.480 0.453 0.466 1,456 757 415 56.41%
0.5 0.390 0.589 0.469 2,328 1,420 663 49.65%

cost of Precision. However, this level of analysis is too coarse grained. For instance, at a 0.6 SCausalRel
score threshold, Precision and Recall are the same, and both of them are below 50%. On the one hand,
this signals that the diversity (of the crowd) is valuable in identifying more relations than the experts. On
the other hand, it does not tell us much about the quality of the data. We basically know that 60% of the
times, the workers agree on the presence of a relation, and that they have identified much more relations
than the experts. Although this is in line with our annotation approach based on commonsense reasoning
(people, with diverse personal experiences, identify a larger set of likely relations), we do not know if
the extra relations with respect to the experts are valid or not.

We thus conducted two additional analyses on the crowd data by inspecting, separately, the event pairs
alone, and then, the relation directionality. This provides a better assessment of the quality of the crowd
data as well as which sub-task is harder: the event pair identification or the relation directionality.

Table 4 reports on the results for the event pairs identification subtask. The mismatch between the
number of crowd relations in Table 3 and that of the crowd pairs in Table 4 is due to the fact that in
some cases both directionality values (i.e. causes and is caused by) have the same SCausalRel,
or the SCausalRel is in the same threshold range, thus increasing the number of relations, especially for
lower thresholds. The values for P, R and F1 are in line with those of the global evaluation (see Table 3).
In this case, we have extended the analysis by manually inspecting 20% of the False Positives for each
threshold, with the exclusion of threshold 1.0. The analysis shows that, until a threshold of 0.6, the
majority of False Positives are actually valid pairs that were missed by the experts. As lower thresholds
subsume all pairs from higher ones, the manual validation of the False Positives shows that it is possible
to identify an optimal threshold for the crowd data, that in this case corresponds to 0.7, where 63.38%
of the event pairs are actually valid. We have also analysed the non-valid cases. We have identified
two reasons for the errors: i.) either the event pair is not valid in the actual context of occurrence (see
example 1); or ii.) the event pair is genuinely wrong (see example 2).

1. A powerful earthquake |[. .. ], killing at least five people and injuring dozens in a region devastated
by the quake-triggered tsunami of 2004. [ESC v1.0, 37_1, sentence 3]

2. During the escape, Arcade Joseph Comeaux , Jr. [... ] took them hostage and forced them to drive
to Baytown, Texas, where he restrained the officers in the back of the van [...]. [ESC v1.0, 3.4,
sentence 3]

In example 1, the event quake took place in 2004, a different (and distant) time period with respect to
the actual killing in the sentence. Interestingly, we observe that such context dependent errors compose
the majority of invalid False Positive up to 0.7. At 0.6 and 0.5, we have observed an increase of errors
(or better disagreements) like example 2 where, rather than a misinterpretation of the context, it is the
presence of the causal/explanatory relation itself that is in doubt or not valid. In this latter case, if we
use a commonsense-based trigger question like “why were the officers restrained?”, it is very unlikely to
answer “Because the escapee drove them. A more suitable answer would be “Because the escapee took
the officers hostage.

Finally, concerning the directionality of the relations, we measured the observed agreement of the
pairs that both the experts and the crowd have annotated, using the same thresholds. Agreement ranges
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between 0.973 for threshold 1.0 and to 0.909 for threshold 0.5. At 0.7, we observed a score of 0.945.
The trend is somehow parallel to the pairs detection, although these values signal an almost perfect
“agreement” with the experts.

5 Conclusion and Future Work

This paper has reported on a crowdsourcing task for identifying causal relations between pairs of events.
We adopted a loose definition of causality, that is best represented by contingent relations. By means of a
pilot experiment we could identify the best amount of events to present to the workers in order to obtain
as much as possible reliable annotations. We used the CrowdTruth metrics both to evaluate the quality
of the annotated data and to weight the quality of the workers based on their overall agreement with the
rest of the workers. This has allowed us to access diverse annotations, using “disagreement” as an extra
source of information rather than to decide what is right or wrong. Finally, we have converted the crowd
data in the same format of ESC v1.0 and generated flexible Gold Standard data, either by merging the
crowd data per threshold to the experts or by using only the crowd data. We call this new resource ESC
v1.2 and make it publicly available.

Natural languages have an extremely varied set of devices (i.e. granularity) to express relations among
concepts, also for causal/contingent relations. Such relations are in most cases not explicitly marked in
the sentence/text. As a further insight from the analysis of the crowd-expert pairs only (i.e. Table 4), we
can observe that the causal relation task has different levels of complexity for the crowd. In particular, it
appears that the identification of valid pairs of events is a harder task than the identification of the relation
directionality.

The combined comparison with expert data has helped us to gain more insights on the differences in
annotations between these two approaches. There is a general tendency for crowd workers to provide
more valid annotations than experts, confirming previous studies (Caselli et al., 2016). At the same
time, we can exploit the SCausalRel score to identify reliability thresholds of the annotated data. The
differences in quality should not be considered as errors but rather as proxies for the complexity of the
task and of the actual data in analysis. This calls for the development of new annotation procedures.
We should reconsider using experts to generate annotations from scratch, and thus risking of making
the generation of new datasets an infeasible task due to money, time, and effort. On the other hand, we
should embrace the ability and diversity of the crowd to perform complex semantic tasks and promote a
new allegiance between crowd and experts. As our results have shown, even at a threshold of 0.5, there
is still a lot of valid information (in our case 49.65%) that should not be discarded and this is when we
should employ experts. As lower thresholds signal also more complex data, experts should be employed
in revising these data. This will result in richer, better, and possibly less biased datasets to be used as
benchmarks for NLP systems.

As future work, we are planning to extend the ESC corpus with newly annotated data by applying
the “crowd-experts-in-the-loop” approach in two directions. The first aims at collecting more data, and
therefore, to allow the development or adaptation of NLP systems for storyline extraction. The second
goal aims at extending the annotations in languages other than English, thus giving rise to a multilingual
version of the ESC dataset.
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