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Abstract

In this paper we describe a deep learning
system that has been designed and built
for the WASSA 2017 Emotion Intensity
Shared Task. We introduce a representa-
tion learning approach based on inner at-
tention on top of an RNN. Results show
that our model offers good capabilities and
is able to successfully identify emotion-
bearing words to predict intensity without
leveraging on lexicons, obtaining the 13th

place among 22 shared task competitors.

1 Introduction

Twitter is a huge micro-blogging service with
more than 500 million tweets per day from dif-
ferent locations in the world and in different lan-
guages. This large, continuous, and dynamically
updated content is considered a valuable resource
for researchers. In particular, many of these mes-
sages contain emotional charge, conveying af-
fectemotions, feelings and attitudes, which can be
studied to understand the expression of emotion in
text, as well as the social phenomena associated.

While studying emotion in text it is commonly
useful to characterize the emotional charge of a
passage based on its words. Some words have af-
fect as a core part of their meaning. For example,
dejected and wistful denote some amount of sad-
ness, and are thus associated with sadness. On the
other hand, some words are associated with affect
even though they do not denote affect. For exam-
ple, failure and death describe concepts that are
usually accompanied by sadness and thus they de-
note some amount of sadness.

While analyzing the emotional content in text,
mosts tasks are almost always framed as classi-
fication tasks, where the intention is to identify
one emotion among many for a sentence or pas-

sage. However, it is often useful for applications
to know the degree to which an emotion is ex-
pressed in text. To this end, the WASSA-2017
Shared Task on Emotion Intensity (Mohammad
and Bravo-Marquez, 2017b) represents the first
task where systems have to automatically deter-
mine the intensity of emotions in tweets. Con-
cretely, the objective is to given a tweet containing
the emotion of joy, sadness, fear or anger, deter-
mine the intensity or degree of the emotion felt
by the speaker as a real-valued score between zero
and one.

The task is specially challenging since tweets
contain informal language, spelling errors and text
referring to external content. Given the 140 char-
acter limit of tweets, it is also possible to find some
phenomena such as the intensive usage of emoti-
cons and of other special Twitter features, such as
hashtags and usernames mentions —used to call
or notify other users. In this paper we describe
our system designed for the WASSA-2017 Shared
Task on Emotion Intensity, which we tackle based
on the premise of representation learning without
the usage of external information, such as lexi-
cons. In particular, we use a Bi-LSTM model
with intra-sentence attention on top of word em-
beddings to generate a tweet representation that is
suitable for emotion intensity. Our results show
that our proposed model offers interesting capabil-
ities compared to approaches that do rely on exter-
nal information sources.

2 Proposed Approach

Our work is related to deep learning techniques
for emotion recognition in images (Dhall et al.,
2015) and videos (Ebrahimi Kahou et al., 2015),
as well as and emotion classification (Lakomkin
et al., 2017). Our work is also related to Liu and
Lane (2016), who introduced an attention RNN
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for slot filling in Natural Language Understanding.
Since in the task the input-output alignment is ex-
plicit, they investigated how the alignment can be
best utilized in encoder-decoder models conclud-
ing that the attention mechanisms are helpful.

EmoAtt is based on a bidirectional RNN that
receives an embedded input sequence x =
{x1, ..., xn} and returns a list of hidden vec-
tors that capture the context each input token
{h1, ..., hn}. To improve the capabilities of the
RNN to capture short-term temporal dependencies
(Mesnil et al., 2013), we define the following:

x̄i = [xi−d; ...;xi; ...;xi+d] (1)

Where x̄i can be regarded as a context win-
dow of ordered word embedding vectors around
position i, with a total size of 2d + 1. To fur-
ther complement the context-aware token repre-
sentations, we concatenate each hidden vector to
a vector of binary features bi, extracted from each
tweet token, defining an augmented hidden state
h̄i = [hi; bi]. Finally, we combine our n aug-
mented hidden states, compressing them into a
single vector, using a global intra-sentence atten-
tional component in a fashion similar to Vinyals
et al. (2015). Formally,

uj = v> tanh(Wa[h̄n; h̄j ]) (2)

αj = softmax(uj) (3)

t =
n∑

j=1

αj · h̄j (4)

Where t is the vector that compresses the input
sentence x, focusing on the relevant parts to esti-
mate emotion intensity. We input this compressed
sentence representation into a feed-forward neural
network, ŷ = Wst, where ŷ is the final predicted
emotion intensity. As a loss function we use the
mini-batch negative Pearson correlation with the
gold-standard.

3 Experimental Setup

To test our model, we experiment using the train-
ing, validation and test datasets provided for
the shared task (Mohammad and Bravo-Marquez,
2017a), which include tweets for four emotions:
joy, sadness, fear, and anger. These were anno-
tated using Best-Worst Scaling (BWS) to obtain
very reliable scores (Kiritchenko and Mohammad,
2016).

Dataset Tweet Length (tokens) Vocab. in GloVeMean Min Max
Fear 17.849 2 37 60.8 %
Joy 17.480 2 42 65.0 %

Sadness 18.285 2 38 65.5 %
Anger 17.438 1 41 65.8 %

Average 17.776 1.75 39.5 64.3 %

Table 1: Data summary.

We experimented with GloVe1 (Pennington
et al., 2014) as pre-trained word embedding vec-
tors, for sizes 25, 50 and 100. These are vec-
tors trained on a dataset of 2B tweets, with a to-
tal vocabulary of 1.2 M. To pre-process the data,
we used Twokenizer (Gimpel et al., 2011), which
basically provides a set of curated rules to split
the tweets into tokens. We also use Tweeboparser
(Owoputi et al., 2013) to get the POS-tags for each
tweet.

Table 1 summarizes the average, maximum and
minimum sentence lengths for each dataset af-
ter we processed them with Twokenizer. We can
see the four corpora offer similar characteristics
in terms of length, with a cross dataset maximum
length of 41 tokens. We also see there is an im-
portant vocabulary gap between the dataset and
GloVe, with an average coverage of only 64.3 %.
To tackle this issue, we used a set of binary fea-
tures derived from POS tags to capture some of
the semantics of the words that are not covered by
the GloVe embeddings. We also include features
for member mentions and hashtags as well as a
feature to capture word elongation, based on regu-
lar expressions. Word elongation is very common
in tweets, and is usually associated to strong senti-
ment. The following are the POS tag-derived rules
we used to generate our binary features.

• If the token is an adjective (POS tag = A)

• If the token is an interjection (POS tag = !)

• If the token is a hashtag (POS tag = #)

• If the token is an emoji (POS tag = E)

• If the token is an at-mention, indicating a user
as a recipient of a tweet (POS tag = @)

• If the token is a verb (POS tag = V)

• If the token is a numeral (POS tag = $)

1nlp.stanford.edu/projects/glove
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• if the token is a personal pronoun (POS tag =
O)

While the structure of our introduced model
allows us to easily include more linguistic fea-
tures that could potentially improve our predictive
power, such as lexicons, since our focus is to study
sentence representation for emotion intensity, we
do not experiment adding any additional sources
of information as input.

In this paper we also only report results for
LSTMs, which outperformed regular RNNs as
well as GRUs and a batch normalized version of
the LSTM in on preliminary experiments. The
hidden size of the attentional component is set to
match the size of the augmented hidden vectors
on each case. Given this setting, we explored dif-
ferent hyper-parameter configurations, including
context window sizes of 1, 3 and 5 as well as RNN
hidden state sizes of 100, 200 and 300. We exper-
imented with unidirectional and bidirectional ver-
sions of the RNNs.

To avoid over-fitting, we used dropout regular-
ization, experimenting with keep probabilities of
0.5 and 0.8. We also added a weighed L2 regu-
larization term to our loss function. We experi-
mented with different values for weight λ, with a
minimum value of 0.01 and a maximum of 0.2.

To evaluate our model, we wrapped the pro-
vided scripts for the shared task and calculated the
Pearson correlation coefficient and the Spearman
rank coefficient with the gold standard in the vali-
dation set, as well as the same values over a subset
of the same data formed by taking every instance
with a gold emotion intensity score greater than or
equal to 0.5.

For training, we used mini-batch stochastic gra-
dient descent with a batch size of 16 and padded
sequences to a maximum size of 50 tokens, given
the nature of the data. We used exponential decay
of ratio 0.9 and early stopping on the validation
when there was no improvement after 1000 steps.
Our code is available for download on GitHub 2.

4 Results and Discussion

In this section we report the results of the exper-
iments we performed to test our proposed model.
In general, as Table 2 shows, our intra-sentence
attention RNN was able to outperform the Weka
baseline (Mohammad and Bravo-Marquez, 2017a)

2github.com/epochx/emoatt

on the development dataset by a solid margin.
Moreover, the model manages to do so without
any additional resources, except pre-trained word
embeddings. These results are, however, reversed
for the test dataset, where our model performs
worse than the baseline. This shows that the model
is not able to generalize well, which we think is
related to the missing semantic information due
to the vocabulary gap we observed between the
datasets and the GloVe embeddings.

To validate the usefulness of our binary fea-
tures, we performed an ablation experiment and
trained our best models for each corpus without
them. Table 3 summarizes our results in terms of
Pearson correlation on the development portion of
the datasets. As seen, performance decreases in
all cases, which shows that indeed these features
are critical for performance, allowing the model to
better capture the semantics of words missing in
GloVe. In this sense, we think the usage of ad-
ditional features, such as the ones derived from
emotion or sentiment lexicons could indeed boost
our model capabilities. This is proposed for future
work.

On the other hand, our model also offers us very
interesting insights on how the learning is per-
formed, since we can inspect the attention weights
that the neural network is assigning to each spe-
cific token when predicting the emotion intensity.
By visualizing these weights we can have a clear
notion about the parts of the sentence that the
model considers are more important. As Figure 1
shows, we see the model seems to be have learned
to attend the words that naturally bear emotion or
sentiment. This is specially patent for the exam-
ples extracted from the Joy dataset, where posi-
tive words are generally identified. However, we
also see some examples where the lack of seman-
tic information about the input words, specially
for hashtags or user mentions, makes the model
unable to identify some of these the most salient
words to predict emotion intensity. Several pre-
processing techniques can be implemented to alle-
viate this problem, which we intend to explore in
the future.

4.1 Anger Dataset

For the anger dataset, our experiments showed that
GloVe embeddings of dimension 50 outperformed
others, obtaining an average gain of 0.066 corre-
lation over embeddings of size 25 and of 0.021
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Corpus Dropout Embeddings λ h
EmoAtt Baseline

ρdev ρtest ρdev ρtest

Sadness 0.8 GloVe Twitter 50 0.20 50 0.586 0.520 0.562 0.648
Joy 0.8 GloVe Twitter 50 0.20 100 0.790 0.537 0.703 0.654

Anger 0.5 GloVe Twitter 50 0.01 100 0.734 0.470 0.605 0.639
Fear 0.9 GloVe Twitter 50 0.05 100 0.644 0.561 0.574 0.652

Average 0.689 0.522 0.611 0.648

Table 2: Summary of the best results.

Dataset w/features w/o features
Sadness 0.586 0.543

Joy 0.790 0.781
Anger 0.734 0.662
Fear 0.644 0.561

Table 3: Impact of adding our binary features.

Figure 1: Example of attention weights for the Joy
dataset. White denotes more weight.

for embeddings of size 100. However on ly the
first of these values was significant, with a p-value
of 3.86 × 10−5. Regarding the hidden size of
the RNN, we could not find statistical difference
across the tested sizes. Dropout also had inconsis-
tent effects, but was generally useful.

4.2 Joy Dataset

In the joy dataset, our experiments showed us
that GloVe vectors of dimension 50 again out-
performed others, in this case obtaining an aver-
age correlation gain of 0.052 (p = 5.6 × 10−2)
over embeddings of size 100, and of 0.062 (p =

3.1×10−2) for size 25. Regarding the hidden size
of the RNN, we observed that 100 hidden units of-
fered better performance in our experiments, with
an average absolute gain of 0.052 (p = 6.5×10−2)
over 50 hidden units. Compared to the models
with 200 hidden units, the performance difference
was statistically not significant.

4.3 Fear Dataset

On the fear dataset, again we observed that em-
beddings of size 50 provided the best results, of-
fering average gains of 0.12 (p = 7 × 10−4) and
0.11 (p = 1.9 × 10−3) for sizes 25 and 100, re-
spectively. When it comes to the size of the RNN
hidden state, our experiments showed that using
100 hidden units offered the best results, with av-
erage absolute gains of 0.117 (p = 9× 10−4) and
0.108 (p = 0.002.4×10−3) over sizes 50 and 200.

4.4 Sadness Dataset

Finally, on the sadness datasets again we exper-
imentally observed that using embeddings of 50
offered the best results, with a statistically sig-
nificant average gain of 0.092 correlation points
(p = 1.3 × 10−3) over size 25. Results were sta-
tistically equivalent for size 100. We also observed
that using 50 or 100 hidden units for the RNN of-
fered statistically equivalent results, while both of
these offered better performance than when using
a hidden size of 200.

5 Conclusions

In this paper we introduced an intra-sentence at-
tention RNN for the of emotion intensity, which
we developed for the WASSA-2017 Shared Task
on Emotion Intensity. Our model does not make
use of external information except for pre-trained
embeddings and is able to outperform the Weka
baseline for the development set, but not in the test
set. In the shared task, it obtained the 13th place
among 22 competitors.
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