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Abstract

Out-of-vocabulary words present a great
challenge for Machine Translation. Re-
cently various character-level composi-
tional models were proposed to address
this issue. In current research we in-
corporate two most popular neural archi-
tectures, namely LSTM and CNN, into
hard- and soft-attentional models of trans-
lation for character-level representation
of the source. We propose semantic
and morphological intrinsic evaluation of
encoder-level representations. Our analy-
sis of the learned representations reveals
that character-based LSTM seems to be
better at capturing morphological aspects
compared to character-based CNN. We
also show that a hard-attentional model
provides better character-level representa-
tions compared to standard ‘soft’ atten-
tion.

1 Introduction

Models of end-to-end machine translation based
on neural networks can produce excellent transla-
tions, rivalling or surpassing traditional statistical
machine translation systems (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015). A central challenge in neural MT
is handling rare and uncommon words. Conven-
tional neural MT models use a fixed modest-size
vocabulary, such that the identity of rare words
are lost, which makes their translation exceedingly
difficult. Accordingly, sentences containing rare
words tend to be translated much more poorly than

those containing only common words (Sutskever
et al., 2014; Bahdanau et al., 2015). The rare
word problem is exacerbated when translating
from morphologically rich languages, where the
several morphological variants of words result in a
huge vocabulary with a heavy tail. For example in
Russian, there are at least 70 word forms for dog,
encoding case, gender, age, number, sentiment and
other semantic connotations. Many of them share
a common lemma, and contain regular morpholog-
ical affixation; consequently much of the informa-
tion required for translation is present, but not in
an accessible form for models of neural MT.

In many cases the OOV problem is addressed by
incorporating character-level word representations
largely belonging to one of two classes, namely
convolutional neural networks (CNNs) and recur-
rent neural networks based on long-short term
memory (LSTM) units (Hochreiter and Schmid-
huber, 1997). But there was no investigation of
what each of the models captures and how well
they can model morphology in particular. In this
paper, we fill this gap by evaluating of encoder-
level representations of OOV words. To get the
representations, we incorporate LSTM and CNN
word representation models into two types of at-
tentional machine translation models. Our eval-
uation includes both intrinsic and extrinsic met-
rics, where we compare these approaches based on
their translation performance as well as their abil-
ity to recover synonyms for the rare words. Intrin-
sic analysis shows that there is only minor differ-
ences in end translation performance, although de-
tailed analysis shows that character-based LSTM
is overally best at capturing morphological regu-
larities.
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2 Related Work

Most neural models for NLP rely on words as their
basic units, and consequently face the problem of
how to handle tokens in the test set that are out-
of-vocabulary (OOV). Often these words are as-
signed a special UNK token, which comes at the
expense of modelling accuracy. One solution to
OOV problem is modelling sub-word units, us-
ing a model of a word from its composite mor-
phemes. Luong et al. (2013) proposed a recur-
sive combination of morphs using affine transfor-
mation, however this is unable to differentiate be-
tween the compositional and non-compositional
cases. Botha and Blunsom (2014) tackle this prob-
lem by forming word representations from adding
a sum of each word’s morpheme embeddings to its
word embedding. Morpheme based methods rely
on good morphological analysers, however these
are only available for a limited set of languages.
Unsupervised analysers (Creutz and Lagus, 2007)
are prone to segmentation errors, particularly on
fusional or polysynthetic languages. In these set-
tings, character-level word representations may be
more appropriate.

Several authors have proposed convolutional
neural networks over character sequences, as part
of models of part of speech tagging (Santos and
Zadrozny, 2014), named entity recognition (Ma
and Hovy, 2016; Chiu and Nichols, 2015), lan-
guage (Kim et al., 2015) and machine translation
(Costa-jussà and Fonollosa, 2016; Belinkov et al.,
2017). The latter one presents an in-depth analysis
of representations learned by neural MT models.
Another strand of research has looked at recurrent
architectures, using long-short term memory units
(Ling et al., 2015; Ballesteros et al., 2015) which
can capture long orthographic patterns in the char-
acter sequence, as well as non-compositionality.
(Lample et al., 2016) shows that incorporating
biLSTM character-level word representations im-
proves accuracy in named entity recognition task.

All of the aforementioned models were shown
to either perform similar or even outperform stan-
dard word-embedding approaches. With a few no-
table exceptions (Vania and Lopez, 2017; Heigold
et al., 2017), there was no systematic investiga-
tion of the various modelling architectures. In our
work we address the question of what linguistic
lexical aspects are best encoded in each type of ar-
chitecture, and their efficacy as part of a machine
translation model when translating from morpho-

Figure 1: Model architecture for the several approaches to
learning word representations, showing from left: BiLSTM
over characters and the character convolution.

logically rich languages.

3 Models

Now we turn to the problem of learning word rep-
resentations. We consider character level encoding
methods which we compare to the baseline word
embedding approach. We test two types of char-
acter representations: LSTM recurrent neural net-
works (RNN) and convolutional neural network
(CNN).

For each type of character encoder we learn
two word representations: one estimated from the
characters and the word embedding.1 Then we
run max pooling over both embeddings to obtain
the word representation, rw = mw � ew, where
mw is the embedding of word w and ew is the
sub-word encoding. The max pooling operation
� captures non-compositionality in the semantic
meaning of a word relative to its sub-parts. We as-
sume that the model would favour unit-based em-
beddings for rare words and word-based for more
common ones.

Each word is expressed with its constituent
units as follows. Let U be the vocabulary of sub-
word units, i.e., characters, Eu be the dimensional-
ity of unit embeddings, and M ∈ REu×|U| be the
matrix of unit embeddings. Suppose that a word
w from the source dictionary is made up of a se-
quence of units Uw := [u1, . . . , u|w|], where |w|
stands for the number of constituent units in the
word. The resulting word representations are then
fed to both attentional models as the source word
embeddings.

1We only include word embeddings for common words;
rare words share a UNK embedding.
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3.1 Bidirectional LSTM Encoder
The encoding of the word is formulated using a
pair of LSTMs (denoted biLSTM) one operating
left-to-right over the input sequence and another
operating right-to-left, h→j = LSTM(h→j−1, muj )
and h←j = LSTM(h←j+1, muj ) where h→j and h←j
are the LSTM hidden states.2 These are fed into
perceptron with a single hidden layer and a tanh
activation function to form the word representa-
tion, ew = MLP

(
h→|Uw|, h

←
1

)
.

3.2 Convolutional Encoder
Another word encoder we consider is a convolu-
tional neural network, inspired by a similar ap-
proach in language modelling (Kim et al., 2016).
Let Uw ∈ REu×|U|w denote the unit-level repre-
sentation of w, where the jth column corresponds
to the unit embedding of uj . The idea of unit-
level CNN is to apply a kernel Ql ∈ REu×kl

with the width kl to Uw to obtain a feature map
fl ∈ R|U|w−kl+1. More formally, for the jth ele-
ment of the feature map the convolutional repre-
sentation is

fl(j) = tanh(〈Uw,j ,Ql〉+ b)

where Uw,j ∈ REu×kl is a slice from Uw which
spans the representations of the jth unit and its
preceding kl − 1 units, and

〈A, B〉 =
∑
i,j

AijBij = Tr
(
ABT

)
denotes the Frobenius inner product. For example,
suppose that the input has size [4×9], and a kernel
has size [4 × 3] with a sliding step being 1. Then,
we obtain a [1× 7] feature map. This process im-
plements a character n-gram, where n is equal to
the width of the filter. The word representation is
then derived by max pooling the feature maps of
the kernels:

∀l : rw(l) = max
j

fl(j)

In order to capture interactions between the char-
acter n-grams obtained by the filters, a highway
network (Srivastava et al., 2015) is applied after
the max pooling layer,

ew = t�MLP(rw) + (1− t)� rw,

where t = MLPσ(rw) is a sigmoid gating func-
tion which modulates between a tanh MLP trans-
formation of the input (left component) and pre-
serving the input as is (right component).

2The memory cells are computed as part of the recurrence,
suppressed here for clarity.

Language Ru-En Et-En
Phrase-based Baseline 15.02 24.40
AM BILSTMchar 16.01 26.34
OSM BILSTMchar 15.81 26.14
AM CNNchar 15.90 26.14
OSM CNNchar 15.94 25.97
AM BILSTMword 15.93 26.33
OSM BILSTMword 15.70 26.03

Table 2: BLEU scores for re-ranking the test sets.

4 Experiments

Datasets. We use parallel bilingual data from
Europarl for Estonian-English (Koehn, 2005), and
web-crawled parallel data for Russian-English
(Antonova and Misyurev, 2011). For preprocess-
ing, we tokenize, lower-case, and filter out sen-
tences longer than 30 words. We apply a fre-
quency threshold of 5, replacing low-frequency
words with a special UNK token. Table 1 presents
the corpus statistics.

4.1 Extrinsic Evaluation: MT
We apply the character level models in the en-
coder of the neural attentional (Bahdanau et al.,
2015) (AM, soft-attentional) and neural operation
sequence (Vylomova et al., 2016) (OSM, hard-
attentional) models, replacing the source word em-
bedding component with a BiLSTM or CNN over
characters. To evaluate translations, we re-ranked
moses3 100-best output translations using the at-
tentional models. The re-ranker includes standard
features from moses plus an extra feature(s) for
each of the models. For the AM we supply the
log probability of the candidate translation, and for
the OSM we add two extra features correspond-
ing to the generated alignment and the translation
probabilities. The weights of the re-ranker are then
trained using MERT (Och, 2003) with 100 restarts
to optimise BLEU.

Table 2 presents BLEU score results. As seen,
re-ranking based on neural models’ scores outper-
forms the phrase-based baseline. However, the
translation quality of the neural models are not
significantly different. We assume that this is due
to re-ranking of moses translations rather than de-
coding. Also note that here we do not address the
problem of OOV on the decoding side.

4.2 Intrinsic Evaluation
We now take a closer look at the embeddings
learned by the models, based on how well they

3https://github.com/moses-smt.
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Set Train Development Test
tokens types tokens types tokens types OOV rate

Ru-En 1,639K-1,809K 145K-65K 150K-168K 35K-18K 150K-167K 35K-18K 45%
Et-En 1,411K-1,857K 90K-25K 141K-188K 21K-9K 142K-189K 21K-8K 45%

Table 1: Corpus statistics for parallel data between Russian/Estonian and English. The OOV rate are the fraction of word types
in the source language that are in the test set but are below the frequency cut-off or unseen in training.

capture the semantic and morphological informa-
tion in the nearest neighbour words. Learning
representations for low frequency words is harder
than that for high-frequency words, since low fre-
quency words cannot capitalise as reliably on their
contexts. Therefore, we split the test lexicon into
6 parts according to their frequency in the train-
ing set. Since we set out word frequency thresh-
old to 5 for the training set, all words appearing in
the lowest frequency band [0,4] are OOVs for the
test set. For each word of the test set, we take its
top-20 nearest neighbours from the whole training
lexicon using cosine similarity.

Semantic Evaluation. We investigate how well
the nearest neighbours are interchangable with a
query word in the translation process. So we for-
malise the notion of semantics of the source words
based on their translations in the target language.
We use pivoting to define the probability of a can-
didate word e′ to be the synonym of the query
word e, p(e′|e) =

∑
f p(f |e)p(e′|f), where f is

a target language word, and the translation prob-
abilities inside the summation are estimated using
a word-based translation model trained on the en-
tire initial bilingual corpora. We then take the top-
5 most probable words as the gold synonyms for
each query word of the test set.4

We measure the quality of predicted near-
est neighbours using the multi-label accuracy5,
1
|S|
∑

w∈S 1[G(w)∩N(w) 6=∅] where G(w) and N(w)
are the sets of gold standard synonyms and near-
est neighbors for w respectively; the function 1[C]

is one if the condition C is true, and zero other-
wise. In other words, it is the fraction of words
in S whose nearest neighbours and gold standard
synonyms have non-empty overlap.

Table 3 presents the semantic evaluation results.
As seen, for the vanilla (soft) attentional model
word- and character-level representations perform

4We remove query words whose frequency is less than a
threshold in the initial bilingual corpora, since pivoting may
not result in high quality synonyms for such words.

5We evaluated using mean reciprocal rank (MRR) mea-
sure as well, and obtained results consistent with the multi-
label accuracy (omitted due to space constraints).

Model Freq. 0-4 5-9 10-14 15-19 20-50 50+
Russian

AM BILSTMword - 0.32 0.52 0.65 0.81 0.95
OSM BILSTMword - 0.36 0.49 0.61 0.76 0.91
AM BILSTMchar 0.21 0.33 0.49 0.58 0.71 0.85
OSM BILSTMchar 0.16 0.34 0.48 0.59 0.71 0.85
AM CNNchar 0.13 0.23 0.38 0.47 0.61 0.84
OSM CNNchar 0.43 0.71 0.77 0.77 0.81 0.81

Estonian
AM BILSTMword - 0.39 0.53 0.63 0.72 0.88
OSM BILSTMword - 0.48 0.62 0.70 0.79 0.90
AM BILSTMchar 0.12 0.30 0.37 0.45 0.52 0.70
OSM BILSTMchar 0.13 0.39 0.48 0.55 0.63 0.78
AM CNNchar 0.12 0.25 0.33 0.42 0.52 0.75
OSM CNNchar 0.48 0.70 0.75 0.76 0.78 0.78

Table 3: Semantic evaluation of nearest neighbours using
multi-label accuracy on words in different frequency bands.

quite similar. In case of the hard attentional model
we OSM CNNchar outperforms other representa-
tions by a large margin.

Morphological Evaluation. We now turn to
evaluating the morphological component. We only
focus on Russian since it has a notoriously hard
morphology. We run another morphological anal-
yser, mystem (Segalovich, 2003), to generate lin-
guistically tagged morphological analyses for a
word, e.g. POS tags, case, person, plurality, etc.
We represent each morphological analysis with a
bit vector, where each 1 bit indicates the pres-
ence of a specific grammatical feature. Each word
is then assigned a set of bit vectors correspond-
ing to the set of its morphological analyses. As
the morphology similarity between two words, we
take the minimum of Hamming similarity6 be-
tween the corresponding two sets of bit vectors.
Table 4(a) shows the average morphology similar-
ity between the words and their nearest neighbours
across the frequency bands. Likewise, we repre-
sent the words based on their lemma features; Ta-
ble 4(b) shows the average lemma similarity.

Table 5 lists top five nearest neighbours for
OOV words produced by the OSM models. BiL-
STMs better capture morphological similarities
expressed in suffixes and prefixes. We assume this

6The Hamming similarity is the number of bits having the
same value in two given bit vectors.
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Ras+po+lag+a+ušč+ej
Disposing (inpraes,dat,sg,partcp,plen,f,ipf,intr)

OSM CNNchar OSM BILSTMchar
ras+po+lag+a+ušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+slab+l+ja+ušč+ej
relaxing (inpraes,dat,sg,partcp,plen,f,ipf)

ras+po+lag+a+ušč+im
disposing (inpraes,ins,sg,partcp,plen,m,ipf,intrn)

so+pro+voj+d+a+ušč+ej
accompanying (inpraes,dat,sg,partcp,plen,f,ipf,tran)

ras+po+lag+a+ušč+ie
disposing (inpraes,nom,pl,partcp,plen,ipf,intr)

ras+slab+l+ja+ušč+uju
relaxing (inpraes,acc,sg,partcp,plen,f,ipf)

ras+po+lag+a+ušč+ih
disposing (inpraes,gen,pl,partcp,plen,ipf,intr)

ras+po+lag+a+ušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+po+lag+a+ušč+i+e+sja
disposing (inpraes,nom,pl,partcp,plen,ipf,act)

pro+dvig+a+ušč+ej
promoting (inpraes,dat,sg,partcp,plen,f,ipf,act)

S+konfigur+ir+ova+t́
Configure (v,pf,tran,inf)

OSM CNNchar OSM BILSTMchar
s+konfigur+ir+ui+te
configure (v,pf,tran,pl,imper,2p)

konfigur+ir+ova+t́
configure (v,ipf,tran,inf)

s+konfigur+ova+li
configured (v,pf,tran,praet,pl,indic)

s+korrekt+ir+ova+t́
adjust (v,pf,tran,inf)

s+konfigur+ova+n
configured (v,pf,tran,praet,sg,partcp,brev,m,pass)

s+koordin+ir+ova+t́
coordinate (v,pf,tran,inf)

s+konstru+ir+ova+t́
construct (v,pf,tran,inf)

s+fokus+ir+ova+t́
focus (v,pf,tran,in)

s+kompil+ir+ova+t́
compile (v,pf,tran,inf)

s+kompil+ir+ova+t́
compile (v,pf,tran,inf)

Table 5: Analysis of the five most similar Russian words (initial word is OOV), under the OSM CNNchar and OSM BILSTMchar
word encodings based on cosine similarity. The diacritic ´ indicates softness. POS tags: s-noun, a-adjective, v-verb; Gender:
m-masculine, f -feminine, n-neuter; Number: sg-singular, pl-plural; Case: nom-nominative, gen-genitive, dat-dative, acc-
accusative, ins-instrumental, abl-prepositional, loc-locative; Tense: praes-present, inpraes-continuous, praet-past, pf -perfect,
ipf -imperfect; indic-indicative; Transitivity: trans-transitive, intr-intransitive; Adjective form: br-brevity, plen-full form,
poss-possessive; Comparative: supr-superlative, comp-comparative; Noun person: 1p-first, 2p-second, 3p-third;

Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
AM BILSTMword - 0.70 0.73 075 0.78 0.82
OSM BILSTMword - 0.74 0.77 0.78 0.81 0.84
AM BILSTMchar 0.90 0.82 0.83 0.83 0.84 0.82
OSM BILSTMchar 0.91 0.84 0.85 0.85 0.86 0.86
AM CNNchar 0.82 0.76 0.77 0.78 0.79 0.81
OSM CNNchar 0.79 0.80 0.79 0.79 0.79 0.79

(a)
Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
AM BILSTMword - 0.02 0.04 0.07 0.11 0.18
OSM BILSTMword - 0.03 0.05 0.06 0.09 0.15
AM BILSTMchar 0.08 0.06 0.10 0.11 0.12 0.21
OSM BILSTMchar 0.05 0.05 0.08 0.10 0.13 0.18
AM CNNchar 0.04 0.02 0.05 0.06 0.1 0.15
OSM CNNchar 0.20 0.37 0.41 0.42 0.44 0.41

(b)

Table 4: Morphology analysis for nearest neighbours based
on (a) Grammar tag features, and (b) Lemma features, evalu-
ated on Russian.

is due to the fact that they are naturally biased
towards most recent inputs. CNNs, on the other
hand, are more invariant of character positions and
provide whole-word similarity.

5 Conclusion

We studied two types of attentional models aug-
mented by CNN and LSTM encodings. Our exper-
iments demonstrate that representation of out-of-
vocabulary words with their sub-word units on the

source side did not lead to a significant improve-
ment in overall quality of machine translation;
however LSTMs applied to character sequences
are more capable at learning morphological pat-
terns. Moreover, a hard attention mechanism leads
to better capturing of semantic and morphological
regularities.
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